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I. Introduction

This document describes the theory, calibration and validation of the Columbia R
Salmon Passage model (CRiSP.1). The model tracks the downstream migration and sur
migratory fish through the tributaries and dams of the Columbia and Snake Rivers t
estuary.

CRiSP.1 describes in detail the movement and survival of individual stocks of natura
hatchery-spawned juvenile salmonids through hundreds of miles of river and up to nine 
Constructed from basic principles of fish ecology and river operation, CRiSP.1 provid
synthesis of current knowledge on how the major hydroelectric system in the country int
with one of its major fisheries. Biologists, managers and others interested in the river s
can use this interactive tool to evaluate the effects of river operations on smolt survival.

There are two modes that CRiSP.1 can use: a Scenario Mode that illustrates the inter
of model variables, and a Monte Carlo Mode, which is stochastic, providing measur
variability and uncertainty in predicted passage survival. Between any two points in the
system, estimates of probability distributions for survival and travel time can be determine
any stock.

CRiSP.1 has advanced programming features including:

• graphical interface to access and change model variables and equations

• flexible data structure that allows expansion of the model while assuring backwards
compatibility with earlier versions

• configurability to a different river without reprogramming

• on-line helptool.

The model runs on Windows95/NT operating systems and on Sun SPARCstations 
the Solaris2 and X Windows graphical interfaces.

CRiSP.1 was developed at the University of Washington’s School of Fisheries un
contract from the Bonneville Power Administration’s (BPA) Fish and Wildlife Division.

 I.1 - General Description

CRiSP.1 models passage and survival of multiple salmon substocks through the Sna
Columbia rivers and their tributaries and the Columbia River Estuary (Fig. 1). The m
recognizes and accounts for the following aspects of the life-cycles of migratory fish and
interaction with the river system in which they live.

Fish survival through reservoirs depends on:

• predator density and activity

• total dissolved gas (tdg) supersaturation levels dependent on spill

• travel time through a reservoir.

Fish migration rate depends on:

• fish behavior and age
1 CRiSP.1.6 TCVDRAFT



• water velocity which in turn depends on flow, cross-sectional area of a reach, and
reservoir elevation.

Fish passage through dams (Fig. 2) depends on:

• water spilled over the lip of the dam

• turbine operations

• bypass screens at turbine entrances and fish guidance sluiceways

• fish diel behavior.
.

Fig. 1 Map of river with dams and fish hatcheries

Fig. 2Dam showing fish passage routes. Fish collected in bypass
systems are returned to the tailrace or, in some situations,
transported downstream.

Spill

Turbine

Bypass
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 I.1.1 -CRiSP.1 Submodels

CRiSP.1 integrates a number of submodels that describe interactions of iso
components. Together they represent the complete model. These elements include sub
for: fish travel time, reservoir mortality, dam passage, total dissolved gas supersaturatio
flow/velocity relationship. The structure of CRiSP.1 allows the user to select diffe
formulations of these submodels at run time. In this sense, CRiSP.1 can be configured to
interactions or it can be set up to consider many ecological interactions. CRiSP.1, a
presently calibrated, has an intermediate level of complexity: age dependent travel t
implemented, but other age dependent factors are switched off. A brief descriptio
submodels follows.

Travel Time

The smolt migration submodel, which moves and spreads releases of fish down 
incorporates flow, river geometry, fish age and date of release. The arrival of fish at a 
point in the river is expressed through a probability distribution. All travel time factors ca
applied or they can be switched off individually, resulting in a simplified migration model.

The underlying fish migration theory was developed from ecological principles. Each
stock travels at an intrinsic velocity as well as a particular velocity relative to the water velo
The velocities can be set to vary with fish age. In addition, within a single release, fish s
as they move down the river.

Predation Rate

The predation rate submodel distinguishes mortality in the reservoir, and the foreba
tailrace of dams. The rate of predation can depend on temperature, diel distribution of
smolt age, predator density, and reservoir elevation.

Gas Bubble Disease

A separate component of mortality from gas bubble disease produced by total dissolv
(tdg) supersaturation is incorporated into CRiSP.1. The mortality rate is species specific 
adjusted to reflect the effect of fish length and population depth distribution.

Dam Passage

Timing of fish passage at dams is developed in terms of a species dependent distr
factor and the distribution of fish in the forebay, which can change with daily and seasona
levels. Fish guidance efficiency can be held constant over a season or it can vary with fi
and reservoir level.

Transportation Passage

Transportation of fish at collection dams is in accordance with the methods implem
by the U.S. Army Corps of Engineers. The start and termination of transportation and sepa
of fish according to species can be determined for any dam under the same rules used to 
the transportation program. Time in transportation and transportation mortality can also b
3 CRiSP.1.6 TCVDRAFT



cribed
 and
irical

ydro-
ow is
al flows
shion,
ls the

ume

ocity

ydro-
me a

 vary
 as a

e file
resent
river

ore can
utary
Total Dissolved Gas Supersaturation

Total dissolved gas (tdg) supersaturation, resulting from spill at dams, can be des
with a mechanistic submodel that includes information of the geometry of the spill bay
physics of gas entrainment. Alternatively, supersaturation can be described by emp
models.

Flow

Flow is modeled in two ways: it can be specified at dams using results of system h
models or it can be described in terms of daily flows at system headwaters. When fl
described in headwater streams, the flow submodel generates a random set of season
that have statistical properties in accordance with the available water over a year. In this fa
the model statistically reproduces flow for wet, average and dry years. The user contro
mainstem river flows by adjusting the outflow of the storage reservoirs within their vol
constraints.

Water Velocity

Water velocity is used in CRiSP.1 as one of the elements defining fish migration. Vel
is determined from flow, reservoir geometry and reservoir elevation.

Reservoir Drawdown

Reservoir elevation is set on a daily basis from elevation information in the system h
models or from user specified files. As water levels drop, part of the reservoir may beco
free-flowing stream.

Stochastic Processes

CRiSP.1 can be run in a Monte Carlo Mode in which flows and model parameters
within prescribed limits. In this mode, survival to any point in the river can be determined
probability distribution.

Geographical Extent

CRiSP.1 can describe a river to any desired level of detail by changing a singl
containing the latitude and longitude of river segments, dams and release sites. In its p
configuration, two river-description files are available. One file contains an abbreviated 
map with the major tributaries. It contains three representative release sites, although m
be added easily. A second river descriptions file defines a more extensive river and trib
system and has upwards of 100 hatchery release sites.
4 CRiSP.1.6 TCVDRAFT
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II. Theory

 II.1 - Model Computation Diagram

CRiSP.1 is a composite of individual integrated process submodels that jointly dete
smolt migration and survival. The equations underlying some submodels are mechanis
are derived from underlying theory. In these equations the parameters have ecolog
physical meaning. The equation relating water flow to velocity, for example, is base
principles of hydrology. A second type of equation is empirical and has no underl
ecological or physical meaning. These are used because they fit the data and are ame
statistical fitting techniques. The parameters of these types of equations seldom have eco
interpretations. For example, in the total dissolved gas (tdg) supersaturation submode
alternative equations are available to relate tdg supersaturation to spill. Here, the paramet
determine the shape of the response. A third type of equation is a mixture of empirica
mechanistic. The predation rate equation (submodel) is an example of this mix with pre
activity and density parameters multiplying the empirical predation temperature response

The CRiSP.1 model calculates changes in fish population numbers as fish move th
tributaries, reservoirs, and dams. Figure 3 is a diagram of the computational tree. Shaded
represent fish entering the system of dams and reservoirs on a daily basis. Unshaded
boxes represent calculations for travel time and survival of fish through the system. Ro
boxes represent input data to the calculation modules.

Fig. 3Diagram of model elements

Dam
passage
modules

Reservoir
passage
modules

Transportation

Number of fish
surviving past
river segment

Fish
release
input

In river
migration

Fish
behavior

input

Predator
activity
input

River
flow/temp

input

Planned
spill
input

Dam
operation

input
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In CRiSP.1, passage and survival of fish through a reservoir is expressed in terms
fish travel time through the reservoir, the predation rate in the reservoir and a mortalit
resulting from fish exposure to total dissolved gas supersaturation, an effect called Gas B
Disease. CRiSP.1 combines these individual mortality factor models (Fig. 4).

The modeling approach has been to develop alternative submodels of reservoir mo
factors so that various hypothesis can be compared.

 Ecological Submodels

Ecological submodels were developed from first principles relating environme
variables with fish behavioral and physiological factors to determine fish pass
Environmental variables, including weather-related factors such as temperature, and s
operating factors such as flow, spill and fish transportation, describe the observable state
environment in which fish live and characterize the rates of fish passage and survival w
through the model equations, generate predicted passage. In the model these variab
contained underReservoir , Behavior, Flow , andDam menus.

The model can use both raw information and statistically analyzed data. The model ru
data expressed as initial release numbers and numbers of fish passing any point or bypa
in the river system. Release information is accessed through theRelease  menu. Passage
information is accessed through thePassage menu of the model. This provides detaile
information of passage at any level from passage of a specific dam route to passage thro
entire system.

Fig. 4Reservoir mortality processes
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 II.2 - Flows

 II.2.1 - Overview of Flow Computation

This section defines the theory for calculation of flows in CRiSP.1. Flow informatio
treated differently for the Monte Carlo and Scenario Modes. In the Monte Carlo Mode, av
flows over defined periods at the dams are read as input from flow archive files. The p
average flows are thenmodulated to give simulated daily flows at the dams. Using th
information, flows in the headwaters are calculated with anupstream propagation algorithm.
Finally, flows through river segments are calculated from the headwaters with thedownstream
propagation algorithm. In the Scenario Mode, flows can be specified at headwaters u
modulators based on historical flows or drawn in using the mouse. Outflows from sto
reservoirs are specified according to the volume constraints of the reservoirs. Finally,
flows are produced using thedownstream propagation algorithm which combines storage
reservoir flows and unregulated headwater flows.

 II.2.2 - Monte Carlo Flow Calculation

When running CRiSP.1 in the Monte Carlo Mode, flow information is specified at d
from flow archive files generated by one of several hydroregulation models. CRiSP.1 u
step-wise process to calculate daily headwater flows. These steps are as follows:

1. Read period-averaged flows at dams from the flow archive file

2. Modulate period-averaged dam flows to give daily dam flows

3. Modulate losses in reservoirs

4. Propagate upstream flows to determine daily headwater flows as well as gains an
es from river segments

5. Propagate downstream flows through all river segments using the headwater flow
the segments’ gains and losses.

Calculation of river flows in the Monte Carlo Mode begins with flows at the dams 
distributes upstream flows to achieve a mass balance. The procedure uses water cons
equations for losses/gains in river segments and flows at unregulated streams and from 
reservoirs. Definitions for flow calculations (Fig. 5) are listed below.

• Regulated headwater segment has a dam, a storage reservoir, and a river source

• Unregulated headwater segment has a confluence at its downstream end and a r
source at its upstream end.

• Loss is a withdrawal (+) or deposit (-) of water to a river segment from an unspeci
source. Losses are used to represent irrigation removals and ground water return
river segments.

• Dams are points that regulate flow, but only dams specified in the flow archive file
considered to be regulation points.

• Confluences are points where two flows upstream of the confluence combine to c
the flow downstream of the point.
7 CRiSP.1.6 TCVDRAFT
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 Hydroregulation Models

Flow files for the Monte Carlo runs are obtained fromFlow Archive files that are generated
from runs of hydroregulation models maintained by two agencies:

• HYDROSIM is run by the Bonneville Power Administration

• HYSSR is run by the U.S. Army Corps of Engineers

The models provide flow on a monthly or bimonthly basis over the entire Columbia B
hydrosystem and are themselves complex models with many variables and special con
As a result, these models are not available to be run directly, although outputs of model ru
available for use in CRiSP.1.

The models use information on natural runoff, regional electrical demand and sto
capacity of the reservoirs to model the stream flow on a period averaged basis. Mode
historical flow records for natural runoff and generate river flows that meet power gener
demand in monthly periods. The exceptions to the monthly periods are April and August w
are each divided into two periods. In addition, the HYDROSIM model provides elevation
all reservoirs.

 Flow Modulation

Flow inputs in the Monte Carlo Mode runs consist of predicted daily flow averaged 
monthly or bimonthly intervals at each dam used in CRiSP.1. This input generated
HYDROSIM, or HYSSR flow archive files typically looks like Fig. 6 below. While this reco
retains most of the annual and seasonal flow variations, actual historic river flows (Fi
exhibit considerable weekly and daily variations that are not replicated by the hydroregu
models used as flow data for CRiSP.1.

Fig. 5  Main objects for the Flow submodel
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The purpose of the modulator is to more accurately simulate real flow patterns encou
by adding variations at finer time-scales consistent with historic flows. These variations in
both random and deterministic components.

Spectral Analysis of Flow

The CRiSP.1 modulators were developed from the following analysis of flows in
Columbia River system. The goal was to develop a modulator that represented daily and w
variations in flow and had the same spectral qualities as the flows in the river system as it 
operated.

Fig. 6  Hydroregulation model simulated input - Wells, 1981

Fig. 7Historic flows at Rocky Reach, 1981

Simulated Inputs at Wells, 1981
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A spectral analysis of an eleven-year time series (1979-1989) of flows revealed the g
trend is a decline in spectral power that is qualitatively similar to a pink noise spectrum1. In
addition, the spectrum has distinct peaks at frequencies of 1/7, 2/7, 3/7 etc., indicating a
day cycle (Fig. 8).

This spectrum suggest several distinct processes. The weekly component is the re
flow decreasing on weekends when electric power consumptions is less. The pink noise e
of the spectrum is probably the result of seasonal and short term correlations in weather p
that alter the power consumption and unregulated runoff directly.

Modulator Applications

The strategy for using period averaged archive flows to simulate flows with the spe
qualities of the actual ones involves adding flow variations at several points in the system
5). These variations are produced by modulators. Since flows start in the headwaters a
summed downstream, flow variation can be added sequentially according to the man
which they are produced. First, the archive flows are prescribed at all dams. Next,
modulations are applied.Weekly anddaily modulations are added at the regulated headwa
to reproduce variations that occur between dams from additions and subtractions of wate
river segments and a loss modulation is added at downstream dams. After modulation,
upstream propagation process is applied to calculate the flows in unregulated headwate
forces the total modulation into the unregulated streams. In the case of the weekly modu
this is an artifact since it is induced by hydrosystem operation. The error is not signif
though, since the weekly modulation is a small fraction of the total variation.

1. Pink noise is random pattern that exhibits some correlation for short time scales

Fig. 8Spectrogram: eleven year time series
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Weekly Modulators

The weekly modulation, applied in the regulated headwaters, simulates hydrosystem 
generations patterns in which electrical demand decreases on weekends. The mod
producing lower flows on weekends and higher flows midweek (Fig. 10), are approxim
with a three-term Fourier series with fixed amplitude. The equation is

(1)

where

• F(t)week (j) = weekly variation in flow for headwater dam j

• G = flow scaling factor in kcfs

This is set to 12.0 to reproduce the observed weekly variation in flow at Wells Dam
the years 1979 to 1989 excluding 1983 for which flows are missing.

• an, bn = Fourier coefficients

a1 = 1,a2 = 2/3,a3 = 1/3

b1 = 6π/7, b2 = 4π/7, b3 = 2π/7

• t = day of the year

• δ = offset for day of week alignment.

The offset is calculated so that for any year from 1900 to 2100 the minimum value ofW occurs
on Sunday.

Fig. 9Points of flow modulation in system.

Archive Flow
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Loss Modulation
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n 1=
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∑–=
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Daily Modulators

Daily modulation simulates all variations not associated with the weekly and sea
variations. A discrete realization of an Ornstein-Uhlenbeck (OU) process (Gardiner 1985
used to generate the daily variation. The process has two important characteristics: var
are slightly correlated from one day to the next and variances stabilize over time. Th
correlated random walk in which autocorrelation decays in time. The stochastic differe
equation for an O-U process is

(2)

where

• Fday = daily variation in flow in kcfs at headwater dam

• r = deterministic rate of change of flow per unit of flow (the range is confined such
0 < r < 1)

• σ = intensity on the random variations in flow

• w(t) = Gaussian white noise process describing the temporal aspects of the flow
variation.

An O-U process has a conditional probability density function (Goel and Richter-
1974)

(3)

where the mean and variance of the process are defined

(4)

(5)

When rt is large enough that exp (-2rt) is negligible,m andV2 tend to be constant values an
the time series is stationary.

Fig. 10 Weekly shape pattern

Weekly Shape, 1981
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Changing the continuous differential equation into a discrete one with∆t = 1 reservoir time
step, and rearranging gives

(6)

r = 0 gives an unbiased random walk, r = 1 gives a series of uncorrelated normal variates.

For the modulators, a system in stochastic equilibrium is sought such thatm = 0. TakingX0
= y = 0 givesm = 0, and discarding the first 35 iterations yields stable variance for any valu
r useful in this context. Modulator parameters selected for the different portions of the s
are given in Table 1 and are based on daily flow data for the years 1979 to 1989 at We
Lower Granite Dams.

Random daily variation is added by a numerical form of an Ornstein-Uhlenbeck (O
random process created for each run (Fig. 11).

 Monte Carlo Flow Modulator Validation

Using daily flow records for Ice Harbor, Priest Rapids and John Day dams during 1
monthly and bimonthly (April and August) average daily flows were computed and appe
to a CRiSP.1 flow archive from which CRiSP.1 generated modulated flows for these d
Graphs of observed and model-produced flows for the first 300 days of the year at Joh
Dam appear in Fig. 12. The model appears to produce realistic patterns of flow variatio
mimic natural flows very well.

Table  1 Daily modulator parameters for river

River σj r j

Upper Columbia 13 0.5

Lower Columbia 13 0.5

Snake 7 0.5

Fig. 11O-U shape; r = 0.5, sigma = 13

F t 1+( )day(j) 1 r j–( )= F t( )day(j) σ j w t( )⋅+⋅

OU Shape, r = 0.5, sigma = 13.0
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At a finer scale, however, note that CRiSP-modulated flows generally exhibit 
variability than do observed flows, e.g. compare January and July (Fig. 13). In gen
modulated flows are about as variable as observed flows in January, but clearly less v
than observed flows in July. This is also reflected in the variance around the mean flow,
in Table 2. This phenomenon is probably due at least partially to “step-like changes” of 
in July that do not occur in January. There is some variation around the mean due solely
trend, and this will not be captured in a purely random modulation scheme.

Fig. 12Flows at John Day Dam, 1981

Fig. 13January and July flows at John Day Dam, 1981

observed
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The term ‘loss’ represents withdrawals from the system, mainly for irrigation. Th
withdrawals are positive in CRiSP.1. Negative losses are return flows through ground wa

The loss data in a segment represents the change in flow that occurs between the flo
(calculated from the flow of upstream segments) and the flow output (stored as data 
segment). Where not specified, flow loss is set to zero.

During the upstream propagation operation, new flow loss values are computed for re
that lie between two dams. A dam is said to have no component of unregulated flow
unregulated headwater flows into the dam without first flowing through some regulation p

For each reachr enclosed between a dam and upstream regulation points (Fig. 5), a
flow lossFL(r) is set by distributing any mass imbalance over all reaches between the dam
or regulated inflow points in proportion to each reach’s maximum allowable flow:

(7)

where

• F D(r) = flow output at dam immediately below reachr

• FL(r) = new flow loss at reachr, as adjusted for mass imbalance

• FM(r) = flow maximum at reachr

• FM(i)  = flow maximum at reachi

• FR(j) = flow at regulation pointj

• n = number of upstream regulated points

Table  2 Variance about mean flow for observed and modulated flows at
three dams in 1981

Dam Month

Variance about monthly mean
flow

Observed Modeled

John Day
January 728.38 287.54

July 1620.08 401.74

Priest Rapids
January 67.34 160.29

July 512.97 170.42

Ice Harbor
January 247.65 156.96

July 149.83 61.83

FL r( ) FR j( ) FD r( )–
j 1=

n

∑
FM r( )

FM i( )
i 1=

p

∑
------------------------=
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• p = number of reaches between damr and all regulation point.

Note: maximum allowable flows are set in thecolumbia.desc file using the keyword flow_max.

Flow loss is not modified by the upstream propagation in any reach not fully enclose
regulated headwaters or dams. After appropriate loss values are set, flow loss in every s
is used as input data for unregulated headwater calculations.

Reservoir Loss Modulation

At downstream dams, variations in flow from losses due to irrigation and evaporation
additions from surface and subsurface groundwater flows are accounted for withloss
modulators. The intensity of this variation is based on the differences in flows observ
adjacent dams as indicated in period averaged hydro-model flows (Fig. 15).

The loss modulation is simulated with a white noise process (Fig. 16). A normal va
random factor is added to modulated flow of all run of the river dam. The equation is

(8)

where

• F loss (i) = modulated flow loss at downstream dami

Fig. 14Diagram of reach structure for loss calculation

Fig. 15 Inputs at Rocky Reach minus inputs at Wells, 1981
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• σi = the standard deviation of the difference in flows (kcfs) at dami andi +1 as
computed by daily observed flows at all dams over the years 1979-1981.

 Headwater Computation

Once flows are modulated at dams and the losses and gains are calculated, the he
flows can be calculated with the algorithms described below.

Regulated Headwater

Regulated headwaters are storage reservoir outflows for the Monte Carlo Mode. No 
are considered for storage reservoir flows other than the dam outflow.

Unregulated Headwaters

Each unregulated headwater is examined. If the flow for a given headwater has not ye
computed, then flow for that and all adjacent unregulated headwaters is calculated.

Table  3 Flow loss modulator parameter for eq (8)

Dam
σi

(kcfs)
Dam

σi
(kcfs)

Bonneville 11.0 Little Goose 5.4

The Dalles 4.1 Priest Rapids 4.0

John Day 17.0 Wanapum 5.0

McNary 12.75 Rock Island 2.65

Ice Harbor 2.75 Rocky Reach 3.0

Lower Monumental 2.4 Wells 6.5

Fig. 16Random factor modulation at Rocky Reach, 1981
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The regionof computation for a segment is defined as all segments within the river 
subgraph with endpoints consisting of the nearest downstream dam, and the nearest reg
points or headwaters upstream from the dam. An example of a region with several unreg
headwaters is given in Fig. 17.

To calculate the unregulated headwater flows, first the total unregulated flow input to
r (D(1) in Fig. 17) is computed by subtracting the total regulated flow from flow at damr. The
equation is

(9)

where

• FTU(r) = total unregulated flow input to damr

• p = number of regulated flows in region

• FD(r) = flow output at damr

• FR(j) = flow output at regulation pointj.

The total unregulated flow is then distributed over all unregulated tributaries upstrea
damr in proportion to each tributary’s maximum flow, as specified incolumbia.desc by the
keyword flow_max. The flow coefficientK at each unregulated headwateri is the percentage
of total unregulated flow contributed by that headwater and is defined

(10)

where

• K i = flow coefficient at unregulated headwateri

• q = number of adjacent unregulated headwaters in region

• FU max (i)= maximum flow at unregulated headwateri or j.

Finally, the flow at each unregulated headwater in the region of the dam,FU(i), is defined

(11)

Fig. 17 Region of regulatedFR and unregulatedFU rivers
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FTU r( ) FD r( ) FR j( )
j 1=

p

∑–=

Ki FUmax i( ) FUmax j( )
j 1=

q

∑ 
 
 

⁄=

FU i( ) K i FTU⋅=
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The logic for the unregulated flow calculation is complete except when flow at any unregu
headwater falls below the minimum set incolumbia.desc for that headwater, which can be zero
In this case

(12)

and then for each reachr enclosed by dams the new lossFL(r) is

(13)

where

• F D(r) = flow output at dam immediately below reachr

• FL(r) = new flow loss at reachr, as adjusted for mass imbalance

• FM(r) = flow maximum at reachr or i

• FR(j) = flow at regulation pointj

• FU (i) = flow at unregulated headwateri

• m = number of unregulated headwaters abover (m = 3 in Fig. 17)

• n = number of regulated points adjacent to nearest upstream regulation point (n = 2 in
Fig. 17)

• p = number of reaches between damr and all upstream regulation points (p = 9 in Fig.
17).

 Downstream Propagation

Downstream propagation of flow in the Monte Carlo Mode is computed after modula
flow loss and unregulated headwater flows are computed. Starting at a headwater, f
propagated by traversing the downstream segments, subtracting loss at each to determ
flow values, and adding flows together at confluences. Thus, flows are assigned at each s
in a downstream recursive descent traversal. The flow for each day is

(14)

where

• Fi (t) = flow regulation pointi at reservoir time incrementt

• FL(i)  = flow loss at reachi

• Fj (t) = flow at regulation pointj immediately upstream at reservoir time incrementt.

Combined Modulated Flow

The modulators are combined with archive flows to give daily flows at the dams acco
to the equation

if FU i( ) FU i( )min<

then FU i( ) FU i( )min=

FL r( ) FR j( ) FD r( )–
j 1=

n

∑ FU i( )
i 1=

m

∑+
FM r( )

FM i( )
i 1=

p

∑
------------------------=

Fi t( ) Fi t( )
i 1+
∑ FL i( )–=
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where

• F(t)i = modulated flow at dami

• F(t) arch (i) = archive flow at dami

• F(t) day (i) = daily modulated flow in regulated headwaterj

• F(t) week (i) = weekly modulated flow in regulated headwaterj

• F loss (i) = loss modulated flow in river segment upstream of dami

• Fmin(i) = minimum allowable flow at dami

• J = number of regulated headwaters upstream of dami

• I = number of dams upstream of dami, including dami.

At each dam, flows are adjusted to conform to minimum values given in Project Dat
Operating Limits (Report 49, Revised Book No. 1 and 2, U.S. Army Corps of Engineers, N
Pacific Division, July 1989). If the flow drops below the minimum it is set to the minimum fl
Minima are in the.dat file under the keyword flow_min. Note: flow minima also exist in th
columbia.desc file and are used to set minimum flows in river segments.

 II.2.3 - Scenario Mode Flow Generation

In the Scenario Mode, seasonal flows for unregulated, i.e. un-dammed, stream
identified on a daily basis. These can be set by the user simply by drawing headwater se
flows or they can be generated from modulators that distribute the total annual headwater
according to the historical seasonal patterns.

Unregulated headwater flows connect directly to the river mainstem or to sto
reservoirs. For storage reservoirs, the user can set the schedule of outflow accord
constraints of the volume of the reservoir and the inflow. System flows are determine
unregulated stream flows and regulated flows from storage reservoir dams.

Table  4 Flow minimum (kcfs) at dams.

Dam Fmin (i) Dam Fmin (i)

Bonneville 80 Dworshak 1

The Dalles 12.5 Hells Canyon 5

John Day 12.5 Priest Rapids 36

McNary 12.5 Wanapum 36

Ice Harbor 7.5 Rock Island 36

Lower Monumental 1 Rocky Reach 36

Little Goose 1 Wells 35

Lower Granite 1 Chief Joseph 35

F t( )i F t( )arch(i) F t( )day(j) F t( )week(j)+{ }
j

J

∑ F loss(i)
i

I

∑+ +=

if F t( )i Fmin(i)< then F t( )i Fmin(i)=
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 Headwater Modulation

In the Scenario Mode, flow from unregulated headwaters are modeled by the follo
equation:

(16)

where

• t = Julian day (t = 1 to 365)

• Yt = estimated daily flow

• m = mean annual flow computed over a 10 year period

• p = fraction of mean annual for the scenario

• et = stochastic error term

• Ft = Fourier term

(17)

• ak, bk = Fourier coefficients estimated for each river

• ω = 2π/365.

The equation given forFt above is a smooth Fourier estimate for the annual stream flow
each river, in units of multiples of the mean. For each scenario, an error term is rand
generated to incorporate the expected fluctuations. There tend to be more prono
deviations from the modeled curve in the wet season (spring), when the exact fluctuatio
more difficult to predict. For this reason, the error component is generated from a low var
normal distribution in the dry season, and a higher variance normal distribution in the
season. Also, since daily flows tend to be highly correlated, the generated (independen
estimates (rt) are artificially correlated according to the following equation:

(18)

where

• rt = randomly generated variable from a normal distribution centered on 0 with
variance appropriate for dry and wet years as described above. The switch from d
year to wet year variance parameters occurs atp = 0.4.

• e0 = 0.

The user chooses the type of year to be modeled relative to an average year, w
designated byp = 1. CRiSP.1 multiplies this proportion of the appropriate average f
parameter,m times (Ft + et), which yields an estimate for daily flow for the Scenario Mode flow

 Reservoir Volume and Flow

The storage reservoirs receive flows from the headwaters which are set by the Sc
Flow Modulators or directly by the user. The flow out of the storage reservoirs can be set 
user under constraints established by the maximum and minimum volume of the st
reservoirs. The equation describing the reservoir usable volume is

Yt mp Ft et+( )⋅=

Ft 1 ak kωt( ) bk kωt( )sin⋅
k 1=

4

∑+cos⋅
k 1=

4

∑+=

et 0.925 et 1–⋅ r t+=
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where

• dV= change in reservoir volume in acre-ft

• dt = time increment, typically 1 day

• FU = unregulated natural flow into the reservoir in kcfs

• FR = regulated flow out of the reservoir, which is controlled by the user under volu
constraints in kcfs.

The volume for each reservoir is determined a reservoir time step increment from a num
form of the volume equation

(20)

where

• V(i) = reservoir volume time stepi with units of acre-ft

• ∆ t = one day increment

• FU and FR = unregulated and regulated flows in kcfs

• c = 1983.5 is a conversion factor

acre-ft = (86400 s/d) * (0.023 acre-ft/ k ft3) * (k ft3 / s) * (d)

V = (86400) * (0.023) *(F) * (∆ t)

V = 1983.5 * (F) * (∆ t)

The user requests reservoir outputFR with the following constraints: The user is allowe
to draw any flow curve for reservoir withdrawal as long as the reservoir is between mini
and maximum operating volumes. If a request requires a volume exceeding the allowable
CRiSP.1 alters the request to fit within the volume constraints. The algorithm is

(21)

with constraints on reservoir outflow and volume defined by the algorithm1

1.
if Vrequest(i+1) > Vmax then

Vrequest(i+1) = Vmax

FR(i) = FU(i)+ [V(i) - Vmax] / c

else

if Vrequest(i+1) < Vmin then

Vrequest(i+1) = Vmin

if Frequest(i) > FU then

FR(i) = FU(i)

else

FR(i) = Frequest(i)

else

FR (i) = Frequest(i)

dV
dt
------- FU FR–=

V i 1+( ) V i( ) c FU i( ) FR i( )–[ ] t∆+=

Vrequest i 1+( ) V i( ) c FU i( ) FR i( )–[ ]+=
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where

• FR = outflow from reservoir according to the constraints

• FU = unregulated inflow to reservoir

• Vrequest = requested outflow from reservoir

• Frequest = requested outflow from reservoir

• V(i) = reservoir volume in reservoir time step i

• Vmax = maximum reservoir volume

• Vmin = minimum reservoir volume.

 Theory for Parameter Estimation

Average daily flow (designated flow_mean) was computed for all available years. 
daily flow was divided by that year’s average. Elements of the resulting series were deno

, where t = day_of_year. Next, the first nine terms of a Fourier series were computed 
fast Fourier transform. Since the mean of each series was 1, corresponding to the norm
annual mean flow, it followsa0 = 1.0. The remaining Fourier coefficients were estimat
according to the equations

(22)

where

• ω = 2π/365

• k = value between 1 and 4.

The residual time series,Rt were computed by the equation

(23)

The residuals were split into high-variance and low-variance parts, and sample sta
deviations computed. mod_start_hi_sigma and mod_end_hi_sigma are the Julian day
high flow variance begins and ends. Period average high and low standard deviatio
mod_hi_sigma and mod_lo_sigma, respectively.

Data

From Hydrodata, a CD-ROM database marketed by Hydrosphere, Inc., the daily flo
were obtained for the following locations and dates:

• Clearwater River @ Orifino, Idaho: Oct. 1980 - Sept. 1989

• Salmon River @ Whitebird, Idaho: Oct. 1980 - Sept. 1989

• Grande Ronde River @ Troy, Oregon: Oct. 1980 - Sept. 1989

• Imnaha River @ Imnaha, Oregon: Oct. 1980 - Sept. 1989

Flow modulator parameter estimates derived from flow data listed above were compa
modulator parameters estimated from flows over the previous 10 years at the same locati
1970-Sep 1980). The parameters were slightly different, but graphs of smooth flow curve
nearly identical for Clearwater, Salmon, and Imnaha rivers. The Grande Ronde had a di
shape, so for this river the parameters were adjusted to include all data from 1970 to 198

Xt
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Table 5 shows parameters estimated for the unregulated headwater modulators. Par
mod_coeffs_a and mod_coeffs_b correspond toak andbk respectively. Table 6 shows data fo
regulated headwaters, i.e., Columbia above Grand Coulee Dam, North Fork Clearwater
Dworshak Dam, and Snake River above Brownlee Dam. Daily mean flow observations fo
year were obtained from the U.S. Army Corps of Engineers, North Pacific Division
processed as in Table 6. Data were obtained for the following locations and dates:

• North Fork Clearwater River: Oct. 1973 - Sept. 1991

• Grand Coulee Dam: Oct. 1971 - Sept. 1991

• Brownlee Dam: Oct. 1981 - Sept. 1991

Table  5 Unregulated headwater flow parameter estimates

Clearwater Salmon G. Ronde Imnaha

flow_mean (kcfs) 8.790 11.240 3.066 0.514

mod_coeffs_a =a1 -0.76 -0.84 -0.34 -0.73

mod_coeffs_a =a2 +0.09 +0.34 -0.18 +0.09

mod_coeffs_a =a3 +0.10 -0.06 -0.03 +0.03

mod_coeffs_a =a4 -0.14 -0.09  0.00 -0.04

mod_coeffs_b =b1 +0.87 +0.50 +0.93 +0.74

mod_coeffs_b =b2 -0.72 -0.64 -0.32 +0.56

mod_coeffs_b =b3 -0.35 +0.44 +0.04 +0.20

mod_coeffs_b =b4 -0.16 -0.25 -0.14 -0.12

mod_lo_sigma 0.06  0.04 0.05 0.06

mod_hi_sigma 0.29  0.20 0.28 0.25

mod_start_hi_sigma  46  86     7    46

mod_end_hi_sigma 196 196 175 196

Table  6 Regulated headwater flow parameter estimates

Columbia Snake Clearwater

flow_mean (kcfs) 110.0 21.50 5.50

mod_coeffs_a =a1 - 0.238 0.029 - 0.508

mod_coeffs_a =a2 0.198 0.132 - 0.038

mod_coeffs_a =a3 0.005 0.008 0.159

mod_coeffs_a =a4 0.041 0.002 - 0.152

mod_coeffs_b =b1 0.128 0.348 0.881

mod_coeffs_b =b2 0.102 0.156 - 0.624

mod_coeffs_b =b3 0.100 0.045 0.159
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 Maximum Unregulated Flows

Observed maximum flows in the tributaries were obtained from the peak flow da
Hydrodata, a CD-ROM database marketed by Hydrosphere, Inc. The data record lengt
variable (Table 7).

mod_coeffs_b =b4 0.024 0.061 - 0.082

mod_lo_sigma 0.062  0.05 0.230

mod_hi_sigma 0.084  0.10 0.305

mod_start_hi_sigma  96  96  96

mod_end_hi_sigma 196 196 196

Table  7 Maximum unregulated flow (kcfs)

Unregulated River Maximum Flow

Wind 30

Hood 30

West Fork Hood 15

East Fork Hood 15

Klickitat 39

Warm Springs 8

Umatilla 18

Walla Walla 21

Tucannon 5

Clearwater 166

Middle Fork Clearwater 78

Red 10

Salmon 129

Little Salmon 10

Rapid River 10

South Fork Salmon 19

Pahsimeroi 1

East Fork Salmon 4

Redfish 1

Yakima 64

Table  6 Regulated headwater flow parameter estimates

Columbia Snake Clearwater
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 Storage Reservoirs Parameter Values

Storage reservoirs volumes are obtained fromProject Data and Operating Limits (1989 a,
b) and are given in Table 8.

Desired reservoir elevation levels for flood control, obtained fromProject Data and
Operating Limits (1989 a, b), are presented in Table 9. This is not used by CRiSP.1 a
present time.

a. estimated
b. In the model all storage reservoirs above Grand Coulee are summed to represent the combined storage

pacity of the upper Columbia system.

Wenatchee 31

Entiat 6

Methow 33

Grande Ronde 36

Imnaha 6

Table  8 Storage reservoirs. Shaded items are used in model.

Reservoir
Max Pool

ft
Min Pool

ft

Usable
Storage in

acre-ft

Powerhouse
Hydraulic Capacity

(kcfs)

Grand Coulee 1290 1208 5,185,500 280

Libby Dam 2459 2287 4,979,599 24.1

Hungry Horse 3565 3336 3,161,000 8.9

Duncan 1897 1794 1,398,600 20

Mica 2478 2320 7,770,000a 41.6

Coulee totalb 22,494,699

Dworshak 1605 1445 2,015,800 10.5

Brownlee 2080 1976 975,318 34.5

Table  7 Maximum unregulated flow (kcfs)

Unregulated River Maximum Flow
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Table  9 Storage reservoirs flood control elevation rule curves

Reservoir Date (Elevation in ft.)

Libby Dam
Nov 1 Dec 1 Jan 1 -

2459 2448 2411 -

Dworshak
Sept. 1 Oct 1 Nov 15 Dec 15

1600 1586 1579 1558
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 II.2.4 -Flow-Velocity-Elevation

The river velocity used in fish migration calculations is related to river flow and p
geometry and varies with pool drawdown as a function of the volume. The pool is repres
as an idealized channel having sloping sides and longitudinal sloping bottom. As a pool is 
down, part of it may return to a free flowing stream that merges with a smaller pool a
downstream end of the reservoir. The submodel is illustrated in Fig. 18 and Fig. 19. Imp
parameters are as follows:

• Hu = full pool depth at the upstream end of the segment

• Hd = full pool depth at the downstream end of the segment

• L = pool length at full pool

• x = pool length at lowered pool

• E = pool elevation drop below full pool elevation

• W = pool width averaged over reach length at full pool

• θ = average slope of the pool side

• F = flow through the pool in kcfs

• Ufree = velocity of free flowing river.

Other parameters illustrated in Fig. 18 are used to develop the relationships betwe
parameters listed above and water velocity and pool volume. They are not named explic

 Pool Volume

Reservoir volume depends on elevation. Elevation is measured in terms ofE, the elevation
drop below the full pool level. The volume calculation is based on the assumptions th
width of the pool at the bottom and the pool side slopes are constant over pool length
consequence of these two assumptions, the pool width at the surface increases
downstream in proportion to the increasing depth of the pool downstream. WhenE >Hu, the
drawn down elevation is below the level of the upstream end and the upper end of the se
becomes a free flowing river section that connects to a pool downstream in the segment
E < Hu, the reservoir extends to the upper end of the segment and for mathematical conve
CRiSP.1 calculates a larger volume and subtracts off the excess. The volume relationsh
function of elevation drop forE positive measured downward) is developed below.

The total volume is defined

(24)

First the equation forV1 is developed. Note that whenE ≥ Hu the volumeV1 divides into two
parts

(25)

whereV’ is a side volume andV” is the thalweg1 volume. They are defined

1. A thalweg is the longitudinal profile of a canyon.

V E( ) V1 E( )=

V E( ) V1 E( ) V2 E( )–=

E Hu≥

E Hu<

V1 2V' V''+=
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(26)

where

(27)

(28)

. (29)

Combining these terms, whenE ≥ Hu it follows pool volume is

(30)

In terms of the fundamental variables in equations (25) to (30) this is

(31)

for E ≥ Hu andx ≤ L.

V' zxy'
6

----------= V'' zxy''
2

-----------=

x L
Hd E–

Hd Hu–
--------------------=

z Hd E–=

y' z θtan= y'' W Hd Hu+( ) θtan–=

V1
zxy'

3
---------- zxy''

2
-----------+=

V1 E( ) L
Hd E–( )2

Hd Hu–
------------------------ W

2
-----

Hd

6
-------

Hu

2
------- E

3
---+ + 

  θtan–=
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When the pool elevation drop is less than the upper depth (soE < Hu andx = L) pool volume
is V(E) where

(32)

Fig. 18 Pool geometry for volume calculations showing perspective of a pool and
cross-sections. The pool bottom with remains constant while the surface widens
in the downstream direction

Hu
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H
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 done
The termV1(E) is the volume of the pool extended longitudinally above the dam, where
depth isHu, so as to form the same triangular longitudinal cross-section as before. This is
so that the volume can still be expressed by eq (31). The termV2(E) is the excess volume of the
portion of the pool above the dam and can be expressed

(33)

Summarizing, the volume relationship as a function of elevation drop, forE positive
measured downward, is

(34)

where

(35)

The equation for full pool volume can be expressed

(36)

When the bottom width is zero the full pool volume becomes

(37)

V2 E( ) L
Hu E–( )2
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2
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2
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Hu

6
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3
---+ + 
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 Water Velocity

Water velocity through a reservoir is described in terms of the residence timeT and the
length of the segmentL. The residence time in a segment depends on the amount of the res
that is pooled and free flowing (Fig. 19).

The equations for residence time are

(38)

where

• V(E) = pool volume (ft3) as a function of elevation dropE in feet

• F = flow in 1000 cubic feet per second or kcfs

• L = segment length in feet

• x = pool length defined by eq (27) and with units of feet

• Ufree = velocity of water in the free stream (kfs) (using the John Day River, the def
value is 4.5 ft/s which is 4.5 x 10-3 kfs)

• T = residence time in this calculation is in kilo seconds or ks.

The velocity in the segment is

(39)

The velocity with the above units is in thousands of feet per second. Combining equatio
(35), eq (38) and eq (39) the segment velocities are:

Fig. 19Reservoir with flowing and pool portions

E

L
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Pool Elevation
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T
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for E ≥ Hu

(40)

and forE < Hu

(41)

where

• U = average river velocity in ft/s

• Ufree = the velocity of a free flowing stream in ft/s

• F = flow in kcfs

• E = elevation drop (positive downward) in ft

• Hu = depth of the upper end of the segment in ft

• V1 andV2 = volume elements defined by eq (35).

 Flow-Velocity Calibration

The calibration of the volume equation requires determining the average pool slope
the pool volume. The equation is the smaller angle of the two forms

(42)

where

• V(0) = pool volume at full pool.

This scheme using eq (42) reflects the volume versus pool elevation relationship deve
for each reservoir by the U.S. Army Corps of Engineers. Capacity versus elevation curve
obtained from several dams to check the accuracy of our volume model. The figures 
show data points from these curves versus CRiSP.1’s volume curve for two dams. F
illustrates Lower Granite pool, with model coefficients ofHu = 40 ft.,Hd = 118 ft,θ = 80.7o, L
= 53 miles,W = 2000 ft, and Wanapum pool, with model coefficientsHu = 42ft.,Hd = 116 ft,θ
= 87.0o, L = 38 miles,W = 2996.1ft.

U L
V1 E( )

F
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 The water particle residence time in a segment is given in eq (38). The pool vo
velocity/travel time equation was tested against particle travel calculations for Lower Gr

Fig. 20Pool elevation vs. volume for Lower Granite and Wanapum Pools

Table  10  Geometric data on Columbia River system. Elev is normal full pool elevation, in fe
above mean sea level. MOP is minimum operating pool elevation.

Segment L Elev MOP V A W Hu Hd θ

Units miles
ft

MSL
ft

MSL
kaf k ft 2 feet feet feet

o of
arc

Bonneville 46.2 77.0 70.0 565 101.8 3643 22 93

The Dalles 23.9 160.0 155.0 332 114.6 3624 60 105

John Day 76.4 268.0 257.0 2,370 255.9 5399 34 149

McNary 61 340.0 335.0 1,350 182.6 5153 40 105

Hanford Reach 44 --- --- 131 24.6 3213 29 29

Priest Rapids 18 488.0 465.0 199 91.2 3208 32 101

Wanapum 38 572.0 539.0 587 127.4 2996 42 116

Rock Island 21 613.0 609.0 113 44.4 982 15 44 6

Rocky Reach 41.8 707.0 703.0 430 84.8 1815 37 108

Wells 29.2 781.0 767.0 300 84.8 3023 91 111

Chief Joseph 52 956.0 930.0 516 81.9

Ice Harbor 31.9 440.0 437.0 407 105.2 2154 18 110

L. Monumental 28.7 540.0 537.0 377 108.4 1937 42 118

Little Goose 37.2 638.0 633.0 365 80.9 2200 40 140

Lower Granite 53 738.0 733.0 484 75.3 2000 48 140
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Lower Granite Wanapum
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Pool as reported by the U.S. Army Corps of Engineers in the Lower Granite Drawdown s
report (1993) (Fig. 21).

 II.2.5 -Temperature

River temperature is computed in two stages. First, hydrosystem temperature inpu
calculated from mixing headwater temperatures according to the equation

(43)

where

• Fi(t) = flow from headwateri through the river segment in question on dayt

• θi(t) = temperature from headwateri on dayt

• θ(t) = temperature for selected river segment on dayt.

Headwater temperatures are identified for the Snake River using measured tempe
from Lower Granite Dam as available in the U.S. Army Corps of Engineers CROH
database. Head water temperatures for the Mid-Columbia are identified from CROHMS
supplemented using data collected by the U.S. Geological Survey (USGS).

Second, changes to the temperatures within the hydrosystem are made by adding∆θ(s,t)
for each day t at sites where the trueθ(t) for the site is known.

Fig. 21Water particle travel time vs. flow for CRiSP.1
(points) and Army Corps calculations (lines) at two
elevations full pool(0) and 38 ft below full pool for
Lower Granite Dam.
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 II.3 - Fish Migration

 II.3.1 -Theoretical Framework

The movement of fish through river segments is described in terms of an average mig
velocity and a stochastic velocity that varies from moment to moment. The migration ve
equation for a group of fish is defined by the Wiener stochastic differential equation

(44)

where

• X = position of a fish down the axis of the river

• dX /dt = velocity of fish in migration

• r = average velocity of fish in the segment

This is a combination of water movement and fish behavior.

• σ = spread parameter setting variability in the fish velocity

• W(t) = Gaussian white noise process to represent variation in velocity.

Numerical simulation of time vs. distance traveled according to eq (44) is illustrated in
22.

 Probability Density Function

The stochastic equation describing fish positions is random so we must defin
probability distribution of fish position over time instead of the actual position, which cha
from one fish to another. The probability density function (pdf) of the stochastic differe
equation (44) can be defined with a Fokker-Planck (Gardiner 1985) equation

(45)

wherep = p (x, t) is the pdf describing the probability density of the fish being at positionx at

Fig. 22Movement along axis of segment vs. time. Shown are
mean path, three paths, and 95% confidence intervals. For these
simulations,r is set at 10, andσ set at 20.
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time t given it was at positionx = 0 at timet = 0.

Boundary Conditions

To solve the pdf from eq (45), boundary conditions must be identified. We assume
upon release into a segment a fish can move upstream or downstream in the segment b
it has reached the downstream end of the segment, atx = L, it will move into the next segment.
The next downstream segment may be a confluence or the forebay of a dam. The bo
conditions are

(46)

Solution

The solution to the partial differential equation  (45) describing the probability distribu
of fish in a river segment is a probability density function for the fish. This is

(47)

An example of the distribution ofp with respect tox for different times is illustrated in Fig.
23. The pdf in the figure can be interpreted as probability where a fish is in the river at any
It can also be interpreted as the distribution of a group of fish in a river segment if they
experienced no predation. Notice that the group moves down the segment and sprea
time. At the absorbing boundary representing a dam, the fish enter the boundary regio
pass through to the next segment. Note that the equation cannot define the deterministic
fish with time.

 Passage Probability

The probability that a fish that entered the river segment at timeti is still in the river
segment at timetj is obtained by integrating eq (47) over reservoir length. This is expresse

Fig. 23 Plot of eq (47) for various values oft. Parametersr, σ andL are
set at 5, 8, and 100 respectively.
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where

• Φ = cumulative distribution of the standard normal distribution

• L = segment length

• r = average migration velocity through the segment (developed in the Migration
Models section).

The probability of a fish leaving a segment between timet andt + ∆t is

(49)

This is the arrival time distribution at the pointL, which is generally a dam or river confluenc
The number of fish exiting each river segment is defined by eq (49).

 II.3.2 -Migration Models

Active Migration equation

The goal of the active migration equation is to be flexible enough to capture a varie
migratory behaviors without requiring an excessive number of parameters to fit. The equ
has a term that relates migration rate to river velocity and a term that is independent o
velocity. Both terms have temporal components, with migration rate increasing with tim
year.

The flow independent migration rate is driven by two parameters,βmin andβmax. βmin is
the flow independent migration rate at the time of release (TRLS), andβmax is the maximum flow

Fig. 24Fish distribution,p (x, t), attj andt j-1. Size of the shaded
area represents probability of fish leaving the segment over the
intervaltj - t j - 1
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independent migration rate. In eq (50) below, it is easier to express the equation in termβ0
andβ1, with the following relations:

(50)

With βmax > βmin, the fish have a tendency to migrate faster the longer they have been 
river. This tendency can be “turned off” by settingβmax = βmin (that is,β1 = 0). Also, flow
independent migration can be turned off entirely by settingβmax = βmin = 0 (that is,β0 = β1 = 0).

The magnitude of the flow dependent term is determined byβflow. This term determines
the percentage of the average river velocity that is used by the fish in downstream mig
This term has a seasonal component determined by theTSEASN term, which is expressed in
terms of Julian date. This has the effect of the fish using less of the flow early in the seas
more of the flow later in the season. Values ofTSEASN that are relatively early in the seaso
mean that the fish mature relatively early. Theα parameter determines how quickly the fis
mature from early season behavior to later season behavior. Settingα2 equal to 0 has the effect
of “turning off” the flow/season interaction, resulting in a linear relationship between migra
rate and river flow.

The full migration rate model (Zabel, Anderson and Shaw, 1998) is:

(51)

where

• r(t) = migration rate (miles/day)

• t = Julian date

• β’s = regression coefficients, described above

•  = average river velocity during the average migration period

• α1 , α2 = slope parameters

• TSEASN = seasonal inflection point (in Julian Days)

• TRLS = release date (in Julian Days).

Both the flow dependent and flow independent components of eq (51) use the lo
equation (term in brackets). The logistic equation is expressed in general as

(52)

This equation has a minimum value ofβ0 and a maximum value ofβ0 + β1. T0 determines the
inflection point, andα determines the slope. Fig. 25 contains example plots of the equation
demonstrates how varying the parameter affects the shape of the curve.

The logistic equation is used instead of a linear equation because upper and lower b
can be set. This eliminates the problem of unrealistically high or low migration rates tha
occur outside observed ranges with linear equations. Also, for suitable parameter valu
logistic equation effectively mimics a linear relationship.

βmin β0

β1

2
-----+=

βmax β0 β1+=

r t( ) β0 β1
1

1 exp α1 t TRLS–( )–( )+
-----------------------------------------------------------+=

βFLOWVt
1

1 exp α2 t TSEASN–( )–( )+
-----------------------------------------------------------------

Vt

y β0 β1
1

1 α t T0–( )–( )exp+
--------------------------------------------------+=
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Other Model Options

As mentioned above, simpler models are nested within the full migration model.
example, settingβ1 = 0 removes the flow-independent experience term. The resulting mod

(53)

has only the flow-dependent experience factor, which assumes that fish migrate more r
later in the season by migrating in high flow regions of the river and/or by spending a g
portion of the day in the river rather than holding up along the shore.

By also settingα2 = 0, all experience related migration rate increases are removed.
resulting model

(54)

assumes a linear relation between migration rate and river velocity. Other combinatio
assumptions are also available in CRiSP.1.

Velocity Variance

The spread parameterσ sets the variability in the migration velocity. This term represe
variability from all causes including water velocity and fish behavior. In CRiSP.1,σ2 = Vvar
which is the variance in the velocity. This can vary on a daily basis.

r t( ) β0 βFLOWVt
1

1 exp α2 t TSEASN–( )–( )+
------------------------------------------------------------------+=

r t( ) β0 βFLOWVt( ) 2⁄+=
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Variance in Migration Rate

Variance in the migration rate is applied for each release, thus randomly represe
differences in the migration characteristics of each release. Although studies su
differences in migration can partly be attributed to differences in fish condition and per
stock to stock variations, these factors have not been sufficiently identified so their contrib
to differences in travel time is randomized. The equation is

(55)

where

• r(t) = determined from eq (51)

• V(i) = variance factor that variesbetween releases only.

V(i) is drawn from the broken-stick distribution. The mean value is set at 100%, represe
r(t), and the upper and lower values are set with sliders under the migration rate varianc
in theBehavior  menu.

Pre-smolt behavior

In some cases, fish are released into the river before they are ready to initiate mig
This may be the case with hatchery releases or fish that are sampled and released in thei
grounds. The probability of moving from the release site is determined by two dates, smoltstart
andsmoltstop:

Fig. 25Examples of the logistic equation (eq (52)) with various parameter
values. In all four plots, the parameter values for the solid curves are:β0 = 1.0,
β1 = 2.0,α = 0.2, andT0 = 20. In the upper left plotβ0 is varied, andβ1 is varied
in the upper right. In the lower left plot,α is varied, andT0 is varied in the lower
right.
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(56)

In other words, the probability of initiating migration is 0 beforesmoltstart, 1 aftersmoltstop, and
linearly increasing with time between the two values. Fish are subjected to predation prior
onset of smoltification. The predation activity coefficient for pre-smolt mortality uses
activity coefficient for the first day of smoltificationt = 1.

 Implementing the Travel Time Algorithm

The basic unit of the travel time algorithm is a reach of river between two nodes, wh
node is a dam, confluence of two rivers, or a release point (Fig. 26). The travel time algo
passes a group of fish from node to node and determines the distribution of travel times fr
upstream node to the next downstream node.

 CRiSP.1 groups fish according to user preference. The user defines species(andstocks, if
desired) in thecolumbia.desc file and associates behavioral characteristics with each spe
through the user interface or the yearly input data file1. For instance, the user may decide th
all chinook 1’s should be treated identically or that wild and hatchery stocks be tre
separately. All releases that are treated similarly are referred to as a release group, ex
the random selection of a migration rate variance.

During one iteration of the travel time submodel, fish from a release group pass thro
reach. The input to CRiSP.1 is the number of fish from the release group that are ready to
a node during the time interval. This input group is passed to the next node downstream
the travel time distributions determined by eq (48) and eq (49). Fig. 27 demonstrates a
iteration of the travel time algorithm.

1. As configured, the columbia.desc defines three species: chinook 1 = spring chinook, chinook 0 = autumn c
nook, and steelhead.

Fig. 26Schematic diagram of a river system. Arrows represent the
migration of release groups 1 and 2 through reaches. At the confluence,
groups are combined for counting purposes only, i.e they still exhibit
their unique migration characteristics.
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Fig. 27Plots of a single iteration of the travel time
algorithm through a single reach. One thousand fish
released at the upstream node are distributed through
time at the next downstream node. Parameter:r = 10,σ
= 8,L = 100.
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 II.4 - Reservoir Survival

The main component of fish mortality in the reservoirs is the predation rate. The pred
rate is dependent on factors such as the number and behavior of predators, size of prey,
disposition of prey, disease, stress from dam passage, and degree of smoltification. The
presented below approximates the mortality processes in the reservoirs. The CRiSP.1
incorporates some of the details of the interactions of the various factors in mortality in fu
modeling the predation rate. The included factors are pictured in (Fig. 28). In the mode
further partition the reservoir into forebay, tailrace and reach (also called reservoir) seg
for the purpose of travel time and mortality modeling.

 II.4.1 -Theoretical Framework

The theoretical framework for describing reservoir mortality in the current model use
time fish spend in a river segment and the segment rate of mortality. The basic equ
describing the rate of mortality as a function of time is

(57)

where

• S = measure of smolt density in the river segment and can be taken as the total n
in the segment

• ϕ = mortality rate from all causes.

Fig. 28Elements in reservoir mortality algorithm. Elements used in all
model conditions designated by ( ). Element selected by the
user is designated by ( )

Predation
Mortality
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dS
dt
------ ϕS–=
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In the present model, two causes of mortality are identified: predation and gas b
disease. CRiSP.1 assumes the rates of each are independent and this is expresse
equation

(58)

where

• Mp = mortality rate from predation with units of time-1

• Mn = mortality rate from total dissolved gas supersaturation with units of time-1

• S = number of smolts leaving reservoir per day (smolts reservoir -1)

• ϕ = combined mortality rate as used in eq (62).

Fish enter and leave river segments every day and spend differing amounts of tim
segment as described by the migration equations. Thus, on a given day the group of fish 
a segment may have entered on different days and thus have different residence time
segment. To describe the number of fish that survive a river segment on a daily basis C
solves eq (57) for each group, identified by when they entered the segment and whe
exited. The solution is

(59)

where

• S0 (tj | ti) = potential number of fish that enter the segment on dayti and survive to leave
the segment on daytj

• S (tj | ti) = actual number of fish that enter the segment on dayti and leave on daytj.

Applying an elementary property of integrals the integral is expressed

(60)

In general, the numerical form of the integral is

(61)

where

• ∆t = reservoir computational time increment.

The resulting equation for the number of fish passing through each river segmen
function of when it entered the segment is expressed

(62)

The input termS0 (tj | ti) expressing the potential number that exit on daytj given then entered
the segment on dayti can be expressed

dS
dt
------ ϕS– M p Mn+( )S–= =

S t j ti( ) S0 t j ti( ) exp ϕ t( )dt

ti

t j

∫–
 
 
 
 

⋅=

ϕ t( )dt

ti

t j

∫ ϕ t( )dt

0

t j

∫ ϕ t( )dt

0

ti

∫–=

ϕ t( )dt

0

t j

∫ ϕ t( ) tk( ) t∆
k 0=

j

∑=

S t j ti( ) S0 t j ti( ) exp ϕ tk( ) t∆
k 0=

j

∑– ϕ tk( ) t∆
k 0=

i

∑+
 
 
 

⋅=
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(63)

where

• N (ti) = number of fish that enter the river segment on dayti
• ∆P (tj | ti) = probability that a fish entering on dayti survives to exit on daytj.

This probability is defined by eq (49) on page 38.

S0 t j ti( ) N ti( ) ∆P t j ti( )⋅=
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 II.4.2 - Predation Mortality

Predation mortality rate in CRiSP.1 is dependent on predator abundance (density), pr
temperature response, and a predator activity coefficient. These factors combine to dete
predation rate (r) which is applied to the smolt population in each time step to deter
predation mortality.

Predation occurs in three zones: forebay and tailrace and main reservoir or river reach
zone has its own predator abundances (which vary from project to project) and predator a
coefficients (set system-wide via the calibration process). The predation mortality is th
function of exposure time.

Predator abundances may vary yearly and are based on predator index stud
(Beamesderfer and Rieman 1988; Rieman et al. 1991; Ward et al. 1995). The major pred
the northern pikeminnow (Ptychocheilus oregonensis, formerly called northern squawfish)
which accounts for approximately 78 percent of the predation mortality (Rieman et al. 1
The other major predators (walleye, and smallmouth bass) are converted into nor
pikeminnow equivalents via their consumption rates. The effects of the predator rem
program on pikeminnow populations have been accounted for from 1991 on.

Thepredator temperature response functiondetermines maximum consumption rates as
function of temperature and is based on laboratory experiments by Vigg and Burley (1
Several forms of the function are available in CRiSP.1. The parameters in the tempe
response function are set during the calibration process (calibration of the model to N
survival estimates). Thus, the predator temperature response may account also for resp
the prey species in the model to variation in temperature.

Thepredator activity coefficient scales the maximal consumption rate to representin situ
conditions where predator-prey encounters may be less frequent, alternative prey may ex
predators may not be feeding to satiation. As stated above, this coefficient varies by res
zone to account for the differences in predator-prey behavior in each zone.

 General Model

Thepredationrate is assumed to be proportional to predator abundance and consum
rate. Consumption rate is scaled by the temperature response function, with consum
increasing with higher water temperature. The general form of the predation rate in theith zone
(forebay, tailrace, or reservoir) for thejth project is:

(64)

where

• T is temperature (0C),

• Pij  is the predator density in theith zone (forebay, tailrace, or reservoir) for thejth
project.

• ai is the predator activity coefficient in theith river zone, and

• f(T) is the temperature response equation.

The predation survival is determined from the predation rate in each time step as fol

. (65)

r ij T( ) αi Pij f T( )⋅ ⋅=

Sij e
r ij t–

=
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For the temperature response function, the sigmoidal form (reparameterized) from
and Burley (1991) is employed

(66)

where

• CMAX = the maximum consumption rate

• αT = a slope parameter

• TINF = the inflection point of the curve.

With this equation, predation rate approaches its maximal rate at higher temperatur
example of equation (66) fit to data from Vigg and Burley (1991) is shown in Fig. 29. 
parameter values for this plot areCMAX=  8.0,αT = 0.40, andTINF = 16.7.

The old (exponential) form of the temperature response function is also available bu
longer supported in the calibration. The exponential form is

(67)

This form may be reasonable for the spring migration period where higher temperatur
not encountered.

As formulated in equation (64), predation rate is dependent on predator abundance 
on smolt abundance. Thus with a given predator density and temperature, mean pr
consumption rate is linearly related to smolt abundance. This is consistent with data pro
by Vigg (1988) except at extremely high smolt abundances (which represent only a few 
out of hundreds). Also, the Vigg (1988) study was conducted in the tailrace.

Note also that the CRiSP.1 predation algorithm is very similar to the RESPRED mod
described by Beamesderfer et al. (1990). The differences are that RESPRED has a t
functional response of predators on prey; i.e., consumption rate tails off at high 
abundances. Also, RESPRED uses a gamma distribution for the temperature response f
instead of the sigmoidal one utilized by CRiSP.1.

 Zone Specific Formulations of the Predation Model

As noted above, the predation equation (64) varies according to reservoir zone (fo
tailrace or reach). The forebay and reservoir predation models are based on exposure 
calculated from the migration submodel. Tailrace residence times tend to be very short,
have assumed one time step residence and have calibrated the model with that in mind.

Another type of model would incorporate exposure (travel) distance as well as exp
time. The tailrace predation model can be thought of as a travel distance based predation

f T( ) CMAX 1( αT T TINF–( ) ) )–(exp+⁄=

f T( ) aebT=
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 Predator Abundance

Predator abundances (as relative predator densities) are needed for each zone 
reservoir. These abundances are based on the predator index studies performed by U.S
ODFW and WDFW (Ward et al. 1995; Zimmerman and Parker 1995). The major predato
northern pikeminnow, walleye and smallmouth bass. Abundances for these predators
based on mark-recapture studies in John Day Pool from 1983-1986 (Beamesderfer and R
1991). For pikeminnow, predator index data from 1990-1991 was used as base abun
because the predator removal program had little or no effect in those years. Bass and w
abundances were converted topikeminnow equivalentsbased on their consumption rate
relative to pikeminnow consumption rates (see Table 16) (Vigg et al. 1991).

Because abundances based on the mark-recapture studies have very broad con
intervals (Beamesderfer and Rieman 1991), and because the predator index are not inte
provideabsoluteabundances (Ward et al. 1995; Zimmerman and Parker 1995), the abun
data should be considered in arelativesense. The purpose of the predator index studies wa
gauge relative differences in predator abundances among reservoirs and within reservoir
This is how this information is utilized in CRiSP.1.

The CMAX  parameter (in the temperature response function) in CRiSP.1 has the eff
scaling predation rate up or down such that model-predicted survivals are consisten
observed survivals. (This will be explained more fully in section III.3.1 - Parame

Table  11 Summary of the forms of the predation mortality rate equation

Reservoir zone applied

forebay, reservoir αf, αr per time step

tailrace αt per tailrace

Fig. 29 Equation 66 fit to data from Vigg and Burley (1991). Note that each point
represents the mean from 11 to 22 replicates.
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Determination and Calibration on page 124.) This can be thought of as a scaling of the r
predator abundances to reflect the actual predator abundances.

 Outline of Calculations for Predator Abundance

The major piscivorous predators on juvenile salmonids are northern pikemin
(Ptychocheilus oregonensis), formerly known as northern squawfish, smallmouth ba
(Micropterus dolomieu), and walleye (Stizostedion vitreum).

Outline of steps:

1. Compute densities in John Day Pool based on 1984-1986 Mark-Recapture data a
ative abundances in different reservoir zones (for each species).

2. Calculate CPUE -> density conversion factors.

3. Estimate densities in other reservoirs/zones based on CPUE data. For some zone
minnow abundance indices must be converted to CPUE based on linear regressio
CPUE vs. indices in cases where both are available.

4. Convert SMB and walleye to “Pikeminnow equivalents” based on relative consump
rates. These densities are different for Spring and Fall due to seasonal difference
consumption rates by the predators. The CPUE is then multiplied by 1080 to conv
density (based on John Day population estimates).

Mean population abundances (1984-1986) in John Day Pool for these three spec
provided in Table 12. Information and interim calculations are provided in Tables 13 - 21. T
22 gives the resulting densities for Spring and Fall. It also gives the pikeminnow perce
which is needed when accounting for results of the pikeminnow removal program.

a. CPUE mult factor = density/CPUE = 1080.

Table  12 Population abundance estimates for John Day Pool, 1984-1986 (Beamesderfe
and Rieman 1991). 95% confidence intervals are in parentheses.

N. Pikeminnow
(>250 mm)

Smallmouth Bass
(>200 mm)

Walleye
(>250 mm)

85,316 (65,693-106,645) 34,954 (35,166-44,741) 15,168 (6,067-32,914)

Table  13 . Northern pikeminnow density and distribution in John Day Pool, based on 199
1991 CPUE data, assuming total abundance the same as 1984-1986.a

zone
John Day
Forebay

mid-
reservoir

McNary
tailrace

McNary
tailrace BRZ

total

CPUE 0.69 0.25 0.76 16.33

Area 10.74 186.7 9.7 1.07 208.2

rel. abundance 0.094 0.592 0.093 0.221 1.0

abundance 8019.7 50507.1 7934.4 18854.8 85316

density 746.7 270.5 818.0 17621.3

comb. density 746.7 297.6 17621.3
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a. For final calculation, forebay and mid-reservoir were averaged (weighted by area) to give a density 
168.8.

Table  14 Walleye density and distribution in John Day Pool, 1984-1986. Relative densitie
are mean for 1984-1986 from Beamesderfer and Rieman (1988).

zone
John Day
Forebay

Arlington Irrigon
McNary
tailrace

McNary
tailrace
BRZ

total

relative density 0.002 0.114 0.305 0.58 0.000 1.0

Area 10.74 117.1 69.6 9.7 1.07 208.2

abundance 15,168

comb. density 0. 77.2

Table  15 Smallmouth bass density and distribution in John Day Pool, 1984-1986. Relativ
densities are mean for 1984-1986 from Beamesderfer and Rieman (1988).a

zone
John Day
Forebay

Arlington Irrigon
McNary
tailrace

McNary
tailrace
BRZ

total

relative density 0.374 0.289 0.277 0.060 0.0 1.0

Area 10.74 117.1 69.6 9.7 1.07 208.2

rel. abund. 0.070 0.586 0.334 0.010 1.0

abundance 2446.8 20483.1 11674.6 349.5 0.0 34,954

comb. density 227.8 165.5

Table  16 Mean daily salmonid consumption estimates for the major predators (salmonid
predator-1 day-1) from Vigg et al. (1991). Walleye and smallmouth bass estimates are for th
reservoir only.

Month
Pikeminnow

Walleye Bass
Tailrace Reservoir Forebay

April 0.123 0.043 0.053 0.021 0.003

May 0.416 0.251 0.280 0.113 0.009

June 0.318 0.086 0.136 0.118 0.019

July 1.950 0.154 0.270 0.447 0.118

August 0.350 0.094 0.130 0.232 0.070
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a. Mean from Table 16 for April - June.
b.  Assumed to be same as reservoir consumption rate.

a. Mean from Table 16 for July - August.
b. Assumed to be same as reservoir consumption rate.

Table  17 Consumption rates for N. Pikeminnow, Walleye and Smallmouth Bass in John
Day Pool, 1984-1986, from Vigg et al. (1991). Mean for April-June.

Species
Reservoir Zone

Forebay Mid-Reservoir Tailrace BRZ

N. Pikeminnow 0.156a 0.127 0.330

Walleye – 0.08 –

Smallmouth Bass 0.010b 0.010 –

Table  18 Consumption rates for N. Pikeminnow, Walleye and Smallmouth Bass in John
Day Pool, 1984-1986, from Vigg et al. (1991). Mean for July-August

Species
Reservoir Zone

Forebay Mid-Reservoir Tailrace BRZ

N. Pikeminnow 0.20a 0.124 1.21

Walleye – 0.34 –

Smallmouth Bass 0.094b 0.094 –

Table  19 Pikeminnow density indices (CPUE) in all reaches, 1990-1991

Reach CPUE ref

Bonneville  tailrace 6.30 c

tailrace BRZ 16.35 c

forebay 5.71 a

mid-reservoir 2.102 a

The Dalles tailrace 0.512 a

tailrace BRZ 5.47 a

forebay 1.104 a

mid-reservoir 1.61 d

John Day tailrace 2.75 a

tailrace BRZ 21.54 a

forebay 0.69 c

mid-reservoir 0.25 c
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McNary tailrace 0.76 c

tailrace BRZ 16.33 c

forebay 0.17 c

mid-reservoir 0.51 d

upper reservoir 0.89 d

Ice Harbor tailrace 0.45 d

tailrace BRZ 8.42 d

forebay 0.08 e

mid-reservoir 0.30 e

Lower
Monumental

tailrace 0.76 e

tailrace BRZ 1.30 e

forebay 0.67 e

mid-reservoir 0.83 e

Little Goose tailrace 1.52 b

tailrace BRZ 16.31 b

forebay 0.64 e

mid-reservoir 0.39 e

Lower
Granite

tailrace 1.63 b

tailrace BRZ 28.29 b

forebay 0.48 e

mid-reservoir 0.17 e

upper reservoir 1.86 b

a = 1990 CPUE data (from Zimmerman et al. 1997)
b = 1991 CPUE data (from Zimmerman et al. 1997)
c = mean 1990 and 1991 CPUE data (from Zimmerman et al. 1997)
d = CPUE estimated from 1990 density index (data from Ward et al. 1993)
e = CPUE estimated from 1991 density index (data from Ward et al. 1993)
Linear regressions for estimating CPUE’s from density index based on reciprocal square root zero catch-

es:R2 = 0.818 (intercept = -3.11, slope = 3.13,p < 0.001) for index < 1.6;R2 = 0.711 (intercept =
-7.64, slope = 7.44,p < 0.01) for index > 1.6.

Table  19 Pikeminnow density indices (CPUE) in all reaches, 1990-1991

Reach CPUE ref
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The predator abundance calculations above arrive at the predator densities shown in
22. As stated earlier, the densities are considered to berelative, that is they provide a
relationship between densities from one reach or zone to the next. They are not intende
absolute predator densities.

The difference between Spring and Fall densities stems from the differences in per pr
consumption rates in those periods (see Tables 17 and 18). These densities are thebasedensities
for 1990 and prior years. For subsequent years, adjustments are made as a resul
pikeminnow removal program.

Table  20 Relative CPUEs for smallmouth bass and walleye (standardized to John Day
Pool) based on the abundances from Zimmerman and Parker (1995). Raw data from N.
Bouwes, ODFW, pers. comm.

Reservoir Smallmouth Walleye

Bonneville 0.69 6.39

The Dalles 0.83 2.88

John Day 1.00 1.00

McNary 0.89 1.11

Ice Harbor 3.93 0.00

L. Monumental 3.87 0.00

Little Goose 4.92 0.00

Lower Granite 11.72 0.00

Table  21 River dimensions from Ward et al. (1995). Tailrace is assumed to be 0.6 km in
length; forebay is assumed to be 6.0 km in length.

length
(km)

ave.
width
(km)

total S.A.
(km2)

S.A.
tailrace
(km2)

S.A.
forebay
(km2)

S.A.
reservoir

Bonneville 74.3 1.37 101.79 0.82 8.22 92.75

The Dalles 38.5 1.42 54.67 0.85 8.52 45.30

John Day 122.9 1.79 219.99 1.07 10.74 208.18

McNary 52.0 1.58 82.16 0.95 9.48 71.73

Snake R. below
Ice Harbor

16.0 0.61 9.76 0.37 9.76

Ice Harbor 51.3 0.61 31.29 0.37 3.66 27.26

L. Monumental 46.2 0.58 26.80 0.35 3.48 22.97

Little Goose 59.9 0.51 30.55 0.31 3.06 27.18

Lower Granite 85.3 0.64 54.59 – 3.84 50.37
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Table  22 1990 predator densities for Spring (SP) and Fall (FA) migrations, by project and
zone, with pikeminnow percentage (% PM) given for each.

Project Zone
Density

(SP)
% PM
(SP)

Density
(FA)

% PM
(FA)

Estuary reservoir 2137.73 0.853 3314.1 0.551

Jones Beach reservoir 2008.13 0.844 3184.5 0.532

Columbia Gorge reservoir 1835.33 0.829 3011.7 0.506

Bonneville Tail reservoir 7123.91 0.955 8244.91 0.825

Bonneville Dam tailrace 17658.0 1.0 17658.0 1

Bonneville Dam forebay 6173.27 0.998 6221.54 0.991

Bonneville Pool reservoir 2458.31 0.869 3579.31 0.597

The Dalles Dam tailrace 5907.6 1.0 5907.6 1

The Dalles Dam forebay 1195.78 0.993 1253.84 0.947

The Dalles Pool reservoir 2105.88 0.928 2670.63 0.731

Deschutes Confl. reservoir 2105.88 0.928 2670.63 0.731

John Day Dam tailrace 23263.2 1.0 23263.2 1

John Day Dam forebay 754.57 0.987 824.53 0.903

John Day Pool reservoir 353.52 0.824 631.23 0.461

McNary Dam tailrace 17636.4 1.0 17636.4 1

McNary Dam forebay 191.94 0.956 254.20 0.722

McNary Pool reservoir 616.60 0.893 899.64 0.612

Lower Snake R reservoir 894.63 0.941 1345.28 0.626

Ice Harbor Dam tailrace 9093.6 1.0 9093.6 1

Ice Harbor Dam forebay 123.25 0.701 398.19 0.216

Ice Harbor Pool reservoir 430.23 0.878 880.88 0.429

Lower Monumental Dam tailrace 1404.0 1.0 1404.0 1

Lower Monumental Dam forebay 759.89 0.952 1030.63 0.702

Lower Monumental Pool reservoir 1034.23 0.950 1478.01 0.664

Little Goose Dam tailrace 17614.8 1.0 17614.8 1

Little Goose Dam forebay 737.33 0.937 1081.53 0.639

Little Goose Pool reservoir 605.39 0.891 1169.56 0.461

Lower Granite Dam tailrace 30553.2 1.0 30553.2 1

Lower Granite Dam forebay 628.30 0.825 1448.21 0.357

Lower Granite Pool reservoir 1246.57 0.875 2590.50 0.421
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 Predator removal adjustments

The predator density estimates in Table 22 are for the years up to and including 199
subsequent years, the densities must be adjusted for the predator (pikeminnow) red
program. Table 23 shows the percent reduction in predation due to pikeminnow at each 
in each year. Note, this does not directly give the reduction in predator numbers.

To calculate the change in predator numbers due to the estimated change in predat
use the fact that  when . Recall from equation (65) that survival in a specific 
zone is given by

and that predator densityP is a factor inr. Also, predation Pred =1 - S.Sincert is on the order
of 0.05,percent change in predation is approximately equal to percent change in pre
density.

So, to calculate adjusted predator densities, reduce the pikeminnow portion of the pr
density (from Table 22) by the amount of predation reduction shown in Table 23.

Table  23 Pikeminnow reduction program. Percent reduction in predation due to pikeminnow 
a result of the pikeminnow reduction program at each project in each year (Peters et al. 199
113). Estimates of predation reduction for 2001-2006 are included in Peters et al. (1999, 11

1991 1992 1993 1994 1995 1996 1997 1998 1999 2

Estuary 0.000 0.029 0.076 0.078 0.120 0.155 0.160 0.141 0.129

Jones Beach 0.000 0.029 0.076 0.078 0.120 0.155 0.160 0.141 0.129

Columbia
Gorge

0.000 0.029 0.076 0.078 0.120 0.155 0.160 0.141 0.129 0

Bonneville
Tailrace

0.006 0.029 0.076 0.078 0.120 0.155 0.160 0.141 0.129 0

Bonneville
Pool

0.006 0.100 0.271 0.185 0.173 0.154 0.148 0.149 0.152 0

The Dalles
Pool

0.065 0.272 0.274 0.274 0.283 0.309 0.329 0.298 0.305 0

Deschutes
Conf.

0.065 0.272 0.274 0.274 0.283 0.309 0.329 0.298 0.305 0

John Day Pool 0.009 0.125 0.181 0.198 0.186 0.140 0.136 0.099 0.068

McNary Pool 0.000 0.020 0.016 0.013 0.009 0.007 0.004 0.003 0.001

Lower Snake 0.000 0.020 0.016 0.013 0.009 0.007 0.004 0.003 0.001

Ice Harbor
Pool

0.000 0.137 0.107 0.080 0.058 0.041 0.027 0.017 0.009 0

Lower Mon.
Pool

0.000 0.083 0.105 0.099 0.084 0.078 0.054 0.036 0.023 0

Little Goose
Pool

0.000 0.057 0.129 0.122 0.128 0.115 0.124 0.088 0.061 0

e x– 1 x–≈ x 1«

S e rt–=
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 Predator Density /Reservoir Volume Interaction

Predators may be concentrated in the forebay or tailrace when the depth of the reg
decreased by lowering the reservoirs. It is possible that concentrating predators increa
encounter rate between predators and prey and thus effectively increases the mortality
the forebay and tailrace.

This mortality increase can be included in CRiSP.1 runs by choosing the appropriate 
box in theRuntime Settings  window opened from theRUN menu. If thepredator density/
volume interaction  is selected, predator density is a function of pool elevation for reserv
forebay and tailrace regions. Predator density adjustments to the forebay and tailrace (F
are given by1

(68)

where

• H = forebay (tailrace) depth at full pool

• h = forebay (tailrace) depth at a lowered pool

• P = predator density at full pool for the forebay (tailrace).

1. The limith/H < 0.05 is arbitrary and required to prevent divide by zero errors. The limit equates to a river
depth just over the head of most managers.

Lower
Granite Pool

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

Fig. 30Predator concentration function at dam

Table  23 Pikeminnow reduction program. Percent reduction in predation due to pikeminnow 
a result of the pikeminnow reduction program at each project in each year (Peters et al. 199
113). Estimates of predation reduction for 2001-2006 are included in Peters et al. (1999, 11

1991 1992 1993 1994 1995 1996 1997 1998 1999 2
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 II.4.3 -Supersaturation Mortality

High levels of total dissolved gas in the river lead to the development of gas bubble d
(GBD) in smolts, as well as other aquatic life. This condition involves the formation of bub
in the fish’s organs, tissues, and vascular system. GBD is also suspected of compromis
fish’s vitality by increasing its susceptibility to predators, bacteria and disease (Dissolve
Abatement Interim Letter Report, 1994). Because of the varied symptoms and effects o
dissolved gas, GBD will be considered an independent force of mortality.

There is uncertainty as to the significance of GBD-induced mortality at low level
supersaturation (<110%) but it is clear in all studies that as the amount of supersatu
increases (> 110%) the rate of mortality increases significantly. The transition betwee
levels of generally sublethal effects to the higher level lethal condition involves a shift in
bubble-related mechanisms that lead to death. Specifically, at levels of supersaturation
the threshold fish are more susceptible to death related to infection and stress while ab
threshold fish experience death from large intravascular bubbles (White et al. 1991).

 Theory

In CRiSP.1, the level of total dissolved gas (tdg) is represented by percent of total diss
gas saturated in the water above equilibrium. Tdg is generated by spill at the dams an
dissipated as the water moves downstream. In the model, the effects of both lethal and su
levels of tdg are considered as well as the changes in the effective tdg concentration re
from depth and distance downstream.

The relationship between migration factors and gas bubble disease is illustrated in F
Tdg supersaturation can be defined with any of submodels selected from the TDG Satu
Equations windows opened from theDam menu.

Fig. 31Factors in gas bubble disease model. Elements used in all
model conditions designated by ( ). Elements selected by
the user are designated by ( ).
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Mortality Rate Equation

To incorporate both the lethal and sublethal effects of gas bubble disease, the mode
piecewise-linear function that expresses the rate of mortalityMtdg as a function ofGs, the level
of total dissolved gas above equilibrium (see figure below). This piecewise-linear charact
is accomplished by using the Heaviside function H() which switches from 0 to 1 as its argu
changes from negative to positive. This allows the model to assume a moderate linear in
in mortality (slope a) at low levels of dissolved gas supersaturation. When the lethal thre
of saturationGc is reached, the Heaviside function turns on and the mortality curve incre
linearly but now at a higher rate (slopea + b). Using the work of Dawley et al. (1976) the
empirical mortality rate equation is

(69)

where

• Gs = percent tdgabove 100% as measured at the surface.

• Gc = threshold above 100% at which the gas bubble disease mortality rate is obse
to change more rapidly towards more lethal levels.

• a = species-specific gas mortality rate coefficient with units ofG-1 day-1 determining
the initial rate of increase of mortality per %-increase in tdg.

• b = species-specific gas mortality rate coefficient with units ofG-1 day-1, determining
the change in mortality rate atGc.

• H() = Heaviside function, also known as the unit step function; equal to zero when
argument is negative, and equal to one when its argument is positive.

Eq(69) is illustrated in Fig. 32.

Mortality Rates

Using the tdg mortality equation is given by eq (58) on page 45 and setting the pre
mortality to zero, the resulting survival equation is

Fig. 32The dissolved gas mortality equation is a function of three
parameters.

Mtdg a Gs b Gs Gc–( ) H Gs Gc–( )⋅+⋅=

Mtdg

G (%tdg above 100%)

Gcslope determined
by a parameter

slope determined
by a andb
parameters
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where

• S = cumulative survival

• Mtdg = tdg mortality rate at a specific level of supersaturation

• t = exposure time.

The survival curves provided by Dawley yielded pairs of (t,S) for varying levels of
dissolved gas. The mortality rate is therefore

(71)

Pairs of (G,Mtdg) were obtained using each of the data points determined from the grap
Dawley et al. (1976). (This data and the calculated Mtdg are shown in Table 24 in the calibratio
section.)

Vertical Distribution

A population of fish from a given species will spread out vertically. A number
distribution functions have been hypothesized (Zabel 1994). For simplicity, CRiSP.1 us
isosceles triangular distribution given by

(72)

where

• zD = depth of the reservoir

• zb = maximum depth of fish distribution

• zm = mode of fish distribution

• m0 = slope of distribution function above mode

• m1 = slope of distribution function below mode.

The fish depth distribution is illustrated in Fig. 33.

Fig. 33 Vertical distribution of fish

Slog Mtdgt–=

Mtdg
Slog

t
-----------–=

Dist z( ) H zD z–( ) m0z H z( )⋅ m1 m0–( ) z zm–( )H z zm–( )
m1 z zb–( )H z zb–( )–
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The work of Zabel (1994) shows that fish of a given species tend to seek specific d
that are correlated to level of illumination.

Size-mortality Relationship

Although no mechanism has been developed justifying a linear relationship, qualita
the ability of a fish to establish gas equilibrium with its environment should be related 
volume to surface area ratio, which is proportional to fish length. Thus on physical princ
of gas exchange a length relationship should be involved with tdg supersaturation mortali
a first order estimate of the length relationship to mortality, the regression (shown in Fig. 
forced through the intercept:

(73)

where

• Mn(L) = tdg mortality rate as a function of fish length

• L = fish length in mm

• a = 0.000472 mm-1, length coefficient for tdg mortality rate.

From eq (73), the tdg mortality rate can be corrected for fish length using

(74)

where

• L = length of fish in environment

• Le = length of fish in tdg mortality experiments.

Downstream dissipation

As fish move downstream in a reservoir their mortality rate due to TDG supersatur
generally decreases because dissolved gas levels are highest at the upstream end and
as the water moves downstream. Using the reservoir gas distribution model (see Total Dis
Gas section on page 71), the saturation level is expressed differently for each side of the

(75)

(76)

The dissipation parameterk is defined with respect to time. To express this time-depend
process in spatial coordinates the time coordinate was transformed to distance down
using the average velocity in the pool:

(77)

where

Mn L( ) aL=

Mn L( ) Mn Le( ) L
Le
-----=

Gright Gmix E– Gdif 1 Sfr–( ) e
θx–⋅ ⋅+ e

k
x
v
--⋅–

⋅ E+=

Gleft Gmix E– Gdif Sfr e
θx–⋅ ⋅– e

k
x
v
--⋅–

⋅ E+=

t
x
v
--=
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• v = average water velocity through the river segment

• x = distance downstream

• t = average water travel-time.

Transforming time to downstream distance using eq (77) defines a new dissip
parameter:

(78)

The surface supersaturation for each side of the river takes on the general form:

(79)

which leads to

(80)

where

• x = distance downstream and , whereL is the pool length (miles)

• c1 = Gmix - E

• c2 =   Gdif
. (1-Sfr), for the right-bank flow and

 - Gdif
. Sfr, for the left-bank flow (see eq (96) and eq (97) on page 84)

• θ = reservoir mixing coefficient in (miles)-1

• E = equilibrium value (0% supersaturation).

Then the rate of mortality as a function of fish depth and distance downstream c
expressed as:

(81)

Wheren indexes the julian day and i indexes the side of the river. There is thus a differe
mortality rate on each side of the river.

Integrate for Average Rate through Pool

For each side of the river the mortality rate is first averaged over the depth and len
the pool, and then an average mortality rate per day for the pool is created by calculati
flow weighted average over the two sides of the river. Thus the average mortality rate for
while it is in a pool is given by the equation:

(82)

where

l k v⁄=

Gs x( ) c1 c2 e
θ̇x–⋅+[ ] e

lx–⋅ E+=

Gs x( ) c1 e
lx–⋅ c2 e

θ l+( )x–⋅+ E+=

0 x L≤ ≤

Mn i, a Gs i, x( )⋅=

b Gs i, x( ) mcz nc––( ) H Gs i, x( ) mcz nc––( )⋅ ⋅+

M Sfr M1⋅ 1 Sfr–( ) M2⋅+=
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and

•  = the mortality rate due to gas bubble disease averaged throughout the length
depth of the pool on sidei.

• i = indexes the side of the river and hence the level of TDG on that side of the rive
-indexing the right-bank and 2 --indexing the left-bank.

 Parameter Determination

Mortality Rates

There are three crucial parameters for the mortality rate equation:

• gc = threshold above 100% at which the gas bubble disease mortality rate is obser
change more rapidly towards more lethal levels

• a = species-specific gas mortality rate coefficient with units ofG-1 day-1 determining
the initial rate of increase of mortality per %-increase in tdg

• b = species-specific gas mortality rate coefficient with units ofG-1 day-1, determining
the change in mortality rate aboveGc.

Determination of the mortality equation parameters begins with determining the D
dependent critical values (gc) and the mortality rates observed in fish exposed to various T
levels. These are shown in Table 24 along with the mortality rates calculated with eq (71).
these are known the a and b parameters follow from simple linear regressions of the mo
rate on the dissolved gas level, allowing for different slopes between thea andb values.

Table  24 Survival data and mortality rates from Dawley et al. (1976)

TDG Days Survival
Mortality

rate
Days Survival

Mortality
rate

Chinook
0.25 meters

Steelhead
0.25 meters

105 20 0.99 0.0005 1 1 0
40 0.98 0.00051 2 1 0
60 0.97 0.00051 5 0.96 0.0082
80 0.9 0.0013 7 0.95 0.0073
100 0.88 0.0013
120 0.87 0.0012

110 20 0.97 0.0015 1 1 0
40 0.95 0.0013 2 1 0
60 0.84 0.0029 7 0.97 0.0044
80 0.63 0.0058
100 0.52 0.0065

Mi
1
L
--- Dist z( )

0

L

∫0

zD

∫ ⋅=

aGs i, x( ) b Gs i, x( ) mcz gc––[ ] H Gs i, x( ) mcz gc––[ ]⋅+( ) x zdd

Mi
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115 10 0.95 0.0051 1 1 0
20 0.84 0.0087 2 0.95 0.026
30 0.72 0.011 3 0.7 0.12
40 0.62 0.012 4 0.58 0.14
50 0.49 0.014 5 0.48 0.15
60 0.22 0.025 6 0.41 0.15
70 0.12 0.03 7 0.37 0.14
80 0.08 0.032
100 0.05 0.03

120 10 0.77 0.026 0.8 0.76 0.34
20 0.57 0.028 1 0.67 0.4
30 0.32 0.038 1.2 0.42 0.72
40 0.22 0.038 1.9 0.060 1.5
50 0.1 0.046
60 0.03 0.058
70 0.02 0.056
80 0.01 0.058

Chinook
2.5 meters

Steelhead
2.5 meters

105 20 1 0 1 1 0
40 1 0 2 1 0
60 0.99 0.00017 3 1 0
80 0.97 0.00038 4 1 0
100 0.97 0.0003 5 1 0
120 0.96 0.00034 6 1 0

110 20 1 0 1 1 0
40 1 0 2 1 0
60 0.99 0.00017 7 0.99 0.0014
80 0.97 0.00038
100 0.95 0.00051
120 0.9 0.00088

115 20 1 0 1 1 0
40 1 0 3 1 0
60 0.97 0.00051 7 0.97 0.0044
80 0.88 0.0016
100 0.83 0.0019
120 0.78 0.0021

120 20 1 0 2 0.99 0.005
40 1 0 3 0.96 0.014
60 0.95 0.00085 7 0.94 0.0088
80 0.71 0.0043
100 0.64 0.0045
120 0.58 0.0045

127 10 0.97 0.003 2 0.92 0.042
20 0.88 0.0064 3 0.87 0.046
30 0.7 0.012 4 0.82 0.05
40 0.52 0.016 5 0.8 0.045
60 0.38 0.016 6 0.77 0.044
80 0.1 0.029 7 0.75 0.041
100 0.07 0.027

Table  24 Survival data and mortality rates from Dawley et al. (1976)

TDG Days Survival
Mortality

rate
Days Survival

Mortality
rate
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Depth Dependent Critical Values

Fidler and Miller (1994) and Dawley et al. (1976) demonstrated that the crit
supersaturation concentration (Gc) is depth dependent, withGc increasing as depth increases. I
other words, fish at lower depths are less susceptible to dissolved gas supersaturation. B
the mechanisms controlling partial pressures of gas bubbles, the partial pressure increase
per meter below the surface (Richards 1965) and Fidler and Miller noticed a linear cha
the threshold depth for gas bubble trauma symptoms. The slope of this linear relations
73.89 mmHg m-1, and given the relationship of TDG to pressure (.1316 %/mmHg), 
equivalent to 9.72 m-1 or 2.96 ft-1.

Based on this work, CRiSP.1 utilizes a linear relationship to relateGeff (the effective gas
concentration) to fish depth:

(84)

(85)

where

• z is fish depth

• m is a slope parameter

Fig. 34Juvenile steelhead cumulative mortality from gas bubble disease at
different levels of tdg supersaturation. Data points from Dawley et al. (1976).
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• gsurface is the TDG at the surface

• gcorrection is the TDG experienced by the fish.

When the model is run, to obtain anGeff for a stock, eq (84) is multiplied by fish density a
a function of depth, and then this term is integrated over the reservoir depth. Calibratio
juvenile salmon converted into the model units of percent tdg above 100%, wherem = 2.96, the
rate of increase ofGc (critical TDG level) with units of percent tdg above 100%.

Effective gas pressures used for the regressions to determinea andb were therefore
corrected for the depth of the fish in the experimental tanks.

Size-mortality Relationship

Dawley et al. (1976) demonstrated that large fish have higher levels of mortality.
shallow tank using fall chinook of different sizes exposed to 112% supersaturation
determined cumulative mortality curves were significantly different (Dawley et al. 1976, 
10). These data can be used to infer the effect of fish length on tdg mortality in reservoirs
the study also demonstrated that shallow tank mortality curves had the same pattern as de
mortalities with higher tdg supersaturation levels. The studies indicated that mortality cur
shallow tanks at 112% saturation were equivalent to mortality curves in a deep tank with 
supersaturation.

The resulting mortality-length relationship can be used to extrapolate experimental r
to field conditions where the fish are larger. The first step is to determine an emp
relationship relating tdg supersaturation mortality to fish length. This is done by regressin
mortality rates against fish length for the fish in the 112% tdg experiments. With 
relationship the results of fall chinook studies in the Dawley experiments are extrapolated
and spring chinook in the Lower Granite reservoir using different average fish lengths for
stock. The steelhead in the Lower Granite reservoir are treated similarly.

To determine the relationship between fish size and tdg supersaturation mortali
mortality rate is first estimated by fitting eq (73) to cumulative mortality vs. exposure time
different sized fall chinook and steelhead (Fig. 35). The estimated rates are given in Tab

Table  25 Depths of fish in the deep water tanks andGc used to determine
mortality rate coefficients

species Depth gcorrection

chinook 1.0 m 9.7

steelhead 1.5m 14.6
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The resulting mortality rates plotted against fish length are illustrated in (Fig. 36).
graph combines fall chinook ranging from 40 to 67 mm. The line in the figure is a linear fit 
a least squares regression constrained to pass through zero. The slope of the line r
mortality rate to length is 0.00126. The regression was not confined to go through zero be
Dawley and Jensen both report that there is a sensitivity threshold for size therefore we 
constrain the line.

Table  26 Total dissolved gas mortality rates and fish length in shallow
tank experiments (Dawley et al. 1976). Plotting symbols refer to Fig.
35.

Species
Plotting
Symbols

Length
(mm)

Average
Mortality

rate

fall chinook
40 0.00364

+ 53 0.0327

67 0.0374

Fig. 35 Cumulative mortality vs. exposure time to tdg
supersaturation for different fish length.
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Exposure Time Limits

In addition to a threshold for depth, there appears to be a threshold for time as wel
suggests that compensatory mechanisms are functional for a period of time and after tha
to break down. As a result, fish exposed to high levels of dissolved gas (for up to 2 mon
more as in the Dawley experiments) are susceptible to mortality at a higher rate tha
exposed for a short period of time. We restrict the mortality rate data to fish exposed for 4
or less, on the order of time that the fish are exposed in the river system. This subset
mortality data is used determine the TDG mortality coefficients.

Determination of Gas Mortality Parameters

Using eq (79), Gs, and the Dawley survival data for fish exposed under 40 days, the param
a andb were fit using linear regression. Regression results are summarized in Table 2
shown in Fig. 37.

Fig. 36Mortality rate of fish of different lengths.

Table  27 Tdg mortality coefficients based on Dawley.

Parameter Fall Chinook
Spring

Chinook
Steelhead

a  0.0001197 0.0001595  0.0006186

b 0.005071 0.006762 0.04762

gc 10.9 10.9 10.9

•

•

•

Fish length

M
or

ta
lit

y 
R

at
e

40 50 60 70

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05
68 CRiSP.1.6 TCVDRAFT



e depth
tion in
se were
ential
Vertical Distribution

The gas bubble disease rate depends on fish depth which is characterized by a mod
and bottom depth. Fish depths vary continuously over day and night, fish age, and posi
the river. For the current model a representative depth is required for each species. The
selected after reviewing the data on fish vertical distributions. The literature and ess
elements are given in Table 28.

Fig. 37Fits of mortality rate parameters to mortality rate data corrected for depth
and fish length. Data points from Dawley et al. (1976), curve from fit of eq (79).
There are extreme points not shown on the steelhead graph.

Table  28 Fish depth information

Species Location Time Mode depth Reference
CRiSP.1
values

spring
chinook

Forebay Day 39 ft
5 ft

Johnson et al. 1985
Ebel 1973

mode=12
maximum = 36

Reservoir

Day 12-24 ft
27-36 ft

Smith 1974
Dauble et al. 1989

Night  0-12 ft
27-36 ft

 Smith 1974
Dauble et al. 1989

fall
chinook

Forebay Day - -
mode=12

maximum = 36
Reservoir

Day 12-20 ft Dauble et al. 1989

Night 12-20 ft Dauble et al. 1989

TDG
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Steelhead
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steelhead

Forebay
Day 13 ft

4 ft
Johnson et al. 1985

Ebel 1973
mode=12

maximum = 36Night - -

Reservoir
Day 0-12 ft Smith 1974

Night 12-24 ft Smith 1974

Table  28 Fish depth information

Species Location Time Mode depth Reference
CRiSP.1
values
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 II.5 - Total Dissolved Gas

 II.5.1 -Introduction

In a riverine environment total dissolved gas at equilibrium should be in relative bal
with the atmospheric pressure. Natural sources, such as waterfalls or organic inputs, ca
the level of gas to rise above the equilibrium level, however the primary source of dissolve
supersaturation in the Columbia and Snake Rivers is spill from hydroelectric dams. As 
flows over the spillway air becomes entrained by the spill flow and is as a result the
becomes supersaturated in total dissolved gas. Though there are river systems tha
problems with a lack of total dissolved gas, sinks of dissolved gas are relatively insignifica
the Snake and Columbia rivers and hence in CRiSP.1 the river never falls below the equil
level.

In CRiSP.1 dissolved gas can enter the system in two ways, either: 1) at a head
representing the amount of gas coming from upstream sources or 2) at a dam, resultin
spill. Headwater input is read in through the data files, whereas dissolved gas productio
dam is calculated by the model based on the level of spill. Dissolved gas is then propa
downstream with the water according to a system of reach dynamics outlined below.

 II.5.2 -Gas Production Equations

 Theory

For CRiSP.1.6, new equations have been implemented for gas production from spill
part of the U.S. Army Corps’ Gas Abatement study, Waterways Experiment Station (W
developed these new equations as an improvement over GASPILL, which had previousl
the predominant model for gas production.

The new equations are an empirical fit of spill data and monitoring data collected b
Corps. The percent of total dissolved gas (tdg) exiting the tailrace of a dam is predicte
function of the amount of discharge in kcfs. This level of tdg is not necessarily the highest
of gas reached, but rather the level of gas in the spill water after some of the more tur
processes have stabilized. The calibration for each dam was fit to the nearest down
monitor, which is typically about a mile downstream of the dam.

For the 8 lower Snake and lower Columbia dams that were studied by WES, th
production equation may take one of three forms: linear function of total spill, a bou
exponential function of total spill, or a bounded exponential function of the spill on a
spillbay basis. These equations were adopted for all dams in CRiSP.1. See the calib
section below for more details.

Equations for tdg supersaturation are of two types. One type constitutes empirical equ
with no underlying theory but which provide a general fit to observed supersaturation dat
function of spill. The other type constitutes mechanistic equations which define tdg leve
terms of physical processes producing spill. CRiSP.1 contains two empirical models an
mechanistic models. CRiSP.1 is calibrated to all submodels. In general, we recommend
the model called Gas Spill 2. Relevant parameters in the submodels are illustrated in Fig
71 CRiSP.1.6 TCVDRAFT
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WES Linear Equation

(86)

where

• %TDG = the % total dissolved gas saturation, where 100% is equilibrium

• Qs = the total amount of spill inkcfs

• m, b = the empirically fit slope and intercept parameters.

WES Exponential Equations

 or (87)

(88)

where

• %TDG = the % total dissolved gas saturation, where 100% is equilibrium

• Qs = the total amount of spill inkcfs

• qs = the amount of spill through an individual spillbay

• a,b,c = the empirically fit model parameters.

CRiSP.1 is currently configured so that a separate spill pattern, and thus a separa
production function, for night and for day can be set for each dam. (A spill pattern spe
which spill bays are used to discharge flow both in number and position.) Once the num
spill gates, n, for a particular pattern is set, Equation 3 is then converted into Equation 2 b
relationqs = Qs/n. This conversion formula assumes that the amount of spill is unifor
distributed among the open spill gates. The model parameters for the day and nig
production thus can be different for a given dam, reflecting a change in the position or nu
of gates and hence in the dynamics of gas production.

Fig. 38 Representation of spillway and stilling basin.

Y0 Nfb
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Fs

Roller

D
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α
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N
FtNfb

%TDG m Qs⋅ b+=

%TDG = a + b expc Qs⋅( )⋅

%TDG = a + b expc qs⋅( )⋅
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Empirical Exponential Equation

An empirical tdg supersaturation equation based on an exponential relationship be
spill flow and supersaturation in the spilled water can be expressed

(89)

where

• Ns = percent supersaturation above 100%

• Fs = spillway flow volume in kcfs

• a, band k = coefficients specific to each dam derived from tdg rating curves provid
by the Bolyvong Tanovan of the Army Corps of Engineers.

The alternative exponential equation was developed first and was used in CRiSP.1 v
3. It was retained in version 4 for backward compatibility of models and is currently used a
backup model when spill exceeds a certain value for certain dams in certain years.

Empirical Hyperbolic Equation

The tdg supersaturation equation data can also be fit with a hyperbolic relationship be
spill flow and supersaturation. The relationship is

(90)

where

• Ns = percent supersaturation above 100%

• Fs = spillway flow volume in kcfs

• a, bandh = coefficients specific to each dam and can be derived from tdg rating cu
available from the Corps of Engineers.

Although this submodel can produce a degree of supersaturation at zero spill flow (wh
= 0), this does not contribute to supersaturation in the tailrace water since the contribut
spill water to the tailrace is zero with zero spill as is defined in eq (102). This model i
preferred empirical model and should be used in place of the exponential model if an em
model is selected.

Gas Spill 1

Gas Spill 1 is a three-parametermultiplicative model, used by the Army Corps of Enginee
at Bonneville Dam only. The equation is

(91)

Gas Spill 2

Gas Spill 2 is a three-parameteradditive model used at all other dams. It is defined

(92)

Ns bFs a 1 exp kFs–( )–( )+=

Ns bFs

aFs
h Fs+
---------------+=

K20 10a Eb Pc⋅ ⋅=

K20 a b E⋅ c P⋅+ +=
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• E = energy loss rate expressed as total headloss divided by residence time of wa
the stilling basin

(93)

• P = forebay percent saturation

• a, b, andc = dam dependent empirical coefficients.

 II.5.3 -Tailrace Dynamics

 Introduction

Extensive field studies led by the Army Corps of Engineers have provided a numb
insights to how dissolved gas exits the dams and it is transported downstream. CRiSP
allows for different scenarios on how the spill and powerhouse flows exit the dam.

Flow enters a dam containing a certain amount of dissolved gas. This flow is routed i
through the powerhouse and the rest through the spillway. Spill produces gas in the tailrac
that generally exceeds incoming levels, whereas the flow exiting through the powerh
retains the forebay gas level. The interaction between these two flows in the tailrace is dy
Currents can dilute the supersaturated spill by inducing mixing with the less-gassed powe
flow or the powerhouse flow can beentrained into the spill flow and also become gassed as
result. Varying flow and spill conditions can change the level of entrainment and mixin
well as the amount of dissolved gas being produced.

In CRiSP.1, both tailrace mixing and entrainment can be specified at a dam. Becaus
of the data used to calibrate the gas production equations came from the water quality m
downstream of the spillway, it is most likely that at last some dilution is represented by 
coefficients. And because there is very little data from the powerhouse flow after it exits th
it is also difficult to measure entrainment directly. To avoid over-determination due to too m
parameters and too little data to separate out the mixing and entrainment dynamic
calibration was thus kept simple by using an all or nothing approach to mixing in the ta
based on observations from field studies rather than a statistical fit of the tailrace m
parameter.

The final measure of CRiSP.1’s calibration is the accuracy of the modeled forebay le
If the amount of gas in the downstream forebay was underestimated then the entrai
function was used to adequately adjust the total amount of gas being added to the syste
was done using the procedure described in Entrainment section below.

 Separate Flows

For the majority of dams on the Columbia and Snake the flows exit as “separate” f
The spill flow will exit the dam with a dissolved gas value produced from spill and
powerhouse flow will often contain a lower gas level, typically closer to the level of gas in
forebay. This motivated a two-flow model for the river. The two flows are denoted (loo
downstream) as “left flow” and “right flow.” Currently only the amount of flow and t
dissolved gas level vary between the left and right flows in a reach or at a dam.

E
Fs

LWD
------------- H D–( )

Fs
D
------ 

 
3 1

2gL
----------–=
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For each dam a spill_side is denoted in thecolumbia.desc file. For example looking
downstream at Ice Harbor Dam, the spillway is on the right side of the dam, so the spil
token, and consequently the spill flow is the right flow and the powerhouse flow is the left 
For some projects this is a simplified view, in these cases if a bias in the spill flow exists
exits the dam then that side was chosen as the spill_side. If the spill_side is not chosen, t
model has the right bank flow as the default for the spill side of a dam. Below is the tab
spill_side values used by the model.

It should be noted that for some of these dams, there is essentially complete mixing
tailrace of the two flows and hence both flows will exit the dam with the same dissolved
level. The spill_side in this case will have no real impact. In the next section mixing is disc
in more detail.

The spill fraction determines the amount of flow which is attributed to the spill_side 
of the river. The amount of dissolved gas in each of the flows depends on four factor
amount of gas in the forebay of the dam, the amount of gas produced by the spill flo
explained in the previous section, and the amount of mixing and/or entrainment in the ta
The two latter dynamics, mixing and entrainment are both adjustable by dam and are exp
in the following sections. Once mixing and entrainment are applied, a dissolved gas va
determined for each flow and passed in as input gas values to the next reach.

Table  29 Spill_side tokens for each dam.

DAM spill_side

CHJ right

WEL left

RRH left

RIS right

WAN right

PRD right

MCN right

JDA right

TDA right

BON right

DWR left

HCY right

LWG right

LGS right

LMN left

IHR right
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Theory

In CRiSP.1, for dams where there is a significant amount of mixing in the tailrace, the 
from spill and the powerhouse are averaged according to their flow fractions. The mixed
value is contained in both flows upon exiting the tailrace. This has the effect of diluting the
flow and raising the level of dissolved gas in the powerhouse flow.

To allow for all possibilities between the extremes of separate flows and full mix
CRiSP.1 has a mixing coefficient for the dam which determines the amount of mi
happening between the powerhouse and spill flows before exiting the dam.

Mixing in the tailrace can be expressed by a decay process which decreases the dif
between the two gas levels as a function of the mixing parameter set for each dam. At th
the spill flow gets gas level Nspill and the powerhouse has the gas level of the forebay. B
exiting the dam, the difference in N between the two flows is decayed as shown in the follo
equation.

(94)

Letting  and

after applying the mixing in the tailrace, we have as exiting gas levels:

   and

.

Given this expression for mixing, a value of  leads to no mixing and the spill f
exits with the gas value generated by the gas production equations and the powerhouse
the forebay value. For a value of , complete mixing is attained and both flows leav
dam withNmix, the flow weighted average of the two gas levels.

Parameter Determination

For most of the fifteen Columbia and Snake dams modeled in CRiSP.1, spill
powerhouse flows exit the dams separately. This is represented by a zero m
coefficient,  at the dam. Dworshak, The Dalles and Bonneville dams had com
mixing in the tailrace.

Table  30 Tailrace Mixing coefficients

DAM θ

CHJ 0

WEL 0

RRH 0

RIS 0

WAN 0

PRD 0

Nspill Nturbine–( ) θ–( )exp⋅

Ndif Nspill Nturbine–= Nmix sfr Nspill 1 sfr–( ) Nturbine⋅+⋅=

Nspill Nmix 1.0 sfr–( ) Ndif θ–( )exp⋅ ⋅+=

Nturbine Nmix sfr Ndif θ–( )exp⋅ ⋅–=

θ 0=

θ 10=

θ 0=
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 dams
In the gas production field studies led by the Army Corps of Engineers, Waterw
Experiment Station, a significant amount of mixing was observed in the tailraces of The D
Dam and Bonneville Dam. For these dams the gas production equations represent well
powerhouse and spillway flows in the tailrace (Evaluation and Analysis of Historical Dissolved
Gas Data from the Snake and Columbia Rivers, 1996), thus complete mixing was assumed 
CRiSP.1 with . For the remaining mainstem dams WES’s work supported separat
and powerhouse flows, and for these dams their gas production equations represent the
of gas in the spill flow.

On the mid-Columbia according to a field study for Chief Joseph prepared by the A
Corps of Engineers, Seattle District, the spill and powerhouse flows exit Chief Joseph D
separate flows (Total Dissolved Gas Abatement at Chief Joseph Dam, 1998). For the remaining
dams separate flows were assumed.

Complete mixing at Dworshak was also assumed based on the steep structure of th
and narrow tailrace at this dam.

 Entrainment

Theory

Entrainment refers to the phenomena that the powerhouse flow actually becomes en
by the spill flow and is gassed as a result. In this scenario, the spill TDG levels are not d
but rather more TDG is added to the system via the powerhouse flow. The entrainment fu
is an empirical relationship between the total amount of gas added to the powerhouse flo
the amount of flow going over the spillway. The higher the spill the more gas that is add
the powerhouse, with the level of TDG in the exiting powerhouse flow ranging from the for
TDG level to the TDG level in the spill flow. This relationship was motivated by the heur
that the larger the amount of spill, the greater the “plunging” force and hence the greater a
of energy in the spill flow.

(95)

Modeled forebay levels at Little Goose, Lower Monumental, Wanapum and Priest Rapids

MCN 0

JDA 0

TDA 10

BON 10

DWR 10

LWG 0

LGS 0

LMN 0

IHR 0

Table  30 Tailrace Mixing coefficients

DAM θ

θ 10=

Nphouse Nforebay Nspill Nforebay–( ) k_entrain– Qspill⋅( )exp⋅+=
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with and without the entrainment coefficient at the previous dam are shown versus the ob
forebay values in Fig. 39-Fig. 42 below.

These values are calibrated annually and represent annual averages. They can be e
to vary from year to year as details of the annual spill patterns and other conditions vary

Table  31 Estimations of K_entrain from CRiSP.1 runs using filtered DART data (observe
and modeled TDG > 100%).

Location 1994 1995 1996 1997 1998 1999

CHJ 0.05

WEL .143 0.00 .94 1 0.175

RRH .001 .005 0.00 .002 0.00

RIS .014 .004 .018 .014 0.00

WAN .052 .029 0.00 .054 .013 0.00

PRD 0.04 0.10 0.00 0.00 0.00

LWG .009 .009 .012 .017 0.025

LGS .868 .96 .555 .802 0.45

LMN 0.00 0.00 0.00 0.00 0.05

IHR 0.00 0.00 0.00 0.25 0.1

MCN 0.00 0.00 0.00 0.00 0.00

JDA 0.00 0.00 0.00 0.00 0.00

TDA 0.00 0.00 0.00 0.00 0.00 0.00
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Fig. 39LGS production values with and without entrainment and observed data (points).
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With entrainment
Without

Julian day

%
 S

at
ur

at
io

n

0 50 100 150 200 250

10
0

11
0

12
0

13
0

14
0

............................
.....

....................
.
.

...........
...........

................

.
.............

....
..
......

.......
.
.
......

....

...
.
..
......

....................
.
.......

.......................
.........

.........
...............

....
..................

LGS TDG production and models 1998

With entrainment
Without

Julian day

%
 S

at
ur

at
io

n

0 50 100 150 200 250

10
0

11
0

12
0

13
0

14
0

..........
...

.
.
.
.......

.
.
...
.........

..............
....
..
.....

.......
......

...

..
............

..........
.........

...........................

LGS TDG production and models 1999

With entrainment
Without
79 CRiSP.1.6 TCVDRAFT



Fig. 40LWG production values with and without entrainment and observed data (points).
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Fig. 41RIS production values with and without entrainment and observed data (points).
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Fig. 42WAN production values with and without entrainment and observed data (points).
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 II.5.4 -Reservoir Dissolved Gas Distributions

 Theory

The CRiSP.1 reservoir gas model has been reworked to model the movement and 
of parcels of water distinguished by different levels of total dissolved gas. A quasi-2D 
model is used to describe the river as two flows, with each flow having its own TDG le
Looking downstream, there is the right bank and the left bank flow (see Fig. 43).

At a dam, the river is divided according to the proportion of spill from the nearest upst
dam and at a confluence by the proportion of flow from the two converging rivers. At a r
where there has been no spill or upstream confluences, the gas levels on either side of t
are simply set to be equal and there is essentially one flow in the reservoir. Fig. 44 repr
the case downstream of a dam. The right bank flow in this case is just the spill flow, an
fraction of flow in the right bank flow is simply the spill fraction.

TDG is mixed between the two flows and simultaneously dissipated as the water m
downstream, with the river velocity being estimated from the flow and reservoir geomet
this manner, the model captures heterogeneous levels of gas. Fig. 44 also gives a diagra
gas dynamics modeled in the reservoir.

Fig. 43A Divided Reservoir

Fig. 44Reservoir Gas Dynamics

x

Left

Bank

Right

Bank

N River Flow

River Flow

 Lateral

   Mixing

Dissipation

Turbine

 Flow

Spill

 Flow

O
O
O
O
O

83 CRiSP.1.6 TCVDRAFT



dary
d in the
licity;
nsional
 of an
ying

low)

ue the

tal
Each of the flows has an initial mass of TDG which is then diffused through the boun
between them and also dissipated into the air. Both of these processes were achieve
model using simple exponential functions. These models were also chosen for their simp
the sparseness of data and the added complexity discouraged the use of a full two-dime
advection-diffusion model. Exponentials were also used because the rate of change
exponential variable is proportional to its value; this is representative of many deca
substances in nature.

The 2-flow model is shown in equations below.

(96)

(97)

where

• Nright , Nleft = the %-TDG in the flow entering the reach on the respective sides

• Sfr = the percent of river in the right-bank flow

• Nmix = the flow weighted average of the TDG values in each flow

(98)

• Ndif = the difference between the original concentrations of the two flows

(99)

• W = width of the river channel, assumed to be constant

• E = %-TDG in water at equilibrium, 100% saturation or 0% supersaturation

• θ = diffusion rate constant in units of (mile)-1, a model parameter set for each reach

• k = dissipation rate constant in units of (day)-1 a model parameter calculated for each
reach based on the river depth, velocity and a diffusion constant (see eq (100) be

• x = longitudinal distance, where x is in miles

• v = river velocity, in miles per day.

Using  Equation 96 and  Equation 97:

(100)

In other words, the difference between the two concentrations is decaying to zero d

diffusion factor  and the dissipation factor . Similarly, with a little algebra the to
mass in the system can be shown to be:

Nright Nmix E– Ndif 1 Sfr–( ) e
θx–⋅ ⋅+ e

k
x
v
--⋅–

⋅ E+=

Nleft Nmix E– Ndif Sfr e
θx–⋅ ⋅– e

k
x
v
--⋅–

⋅ E+=

Nmix Sfr Nright⋅ 1 Sfr–( ) Nleft⋅+=

NDif Nright Nleft–=

Nright Nleft– Ndif e
θx–⋅ e

k
x
v
--⋅–

⋅=

e
θx–

e
k

x
v
--⋅–
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Thus the total mass (without the dissipation factor  it remains atNmix) is decaying
to equilibrium levelE. Hence the physical properties are captured with these two equat
Nright andNleft are computationally inexpensive and their simplicity results in an easy fitting
integration.

A given reservoir can have slugs of water which entered the reach under different 
conditions. Typically, these slugs are caused by varying spill conditions at an upstream
Conditions at a dam can vary on a “dam time-step” basis. Thus all water leaving the rea
given dam-timestep is assumed to have the same initial conditions. At any given point 
reach, daily river velocities and the distance downstream in the reach are used to calcu
length of time the water has been in the reach. These travel times are used to capture the
initial conditions and the amount of mixing and dissipation that have occurred in this sl
water. At any given point at the reach, the dissolved gas level is calculated by knowing the
conditions for Nright and Nleft, and Sfr along withx (distance downstream).

 Parameter Determination

In transect studies completed by the Army Corps of Engineers, gas data from latera
sections of the Snake and Columbia river were sampled to gather information on m
characteristics in each of the reservoirs from Lower Granite to Bonneville dam. These 
were sampled under high and low flow conditions and showed that while the dam introdu
heterogeneous flow, the reservoirs were well-mixed by the next downstream forebay.

Because mixing rates vary according to dam operations, river velocity, and other cond
such as wind, a conservative estimate for mixing was fixed for all reaches. A value of 0.07
used to fix the mixing rate so that the flows were 95% mixed in 40 miles. The transect data
the 1996 and 1997 studies showed that the difference between the left-bank and right ban
rarely differed by more than this in the downstream forebay.

 II.5.5 -Other Gas Inputs

In the last several years more and more dissolved gas data has become available f
Army Corps of Engineers so that nearly every pool has at least 2 water quality monitors, 
the forebay of the dam and one in the tailrace of the previous dam. For this reason an
feature was added to CRiSP.1 to allow the direct input of dissolved gas data at any reach
in the model. This is achieved through a token called output_gas in the data file. By defau
feature is turned off, but if the line “output_gas on” appears in a reach or dam profile, t
vector of dissolved gas data of length num_days* num_dam_slices (currently 366*4) sho
supplied.

The intention of this feature was to allow total dissolved gas to enter the system abo
dams. Thus, in most data files a vector of data is provided at two locations: Chief Josep
for gas entering from Columbia Headwaters, and Lower Granite pool, for the gas entering
the upper Snake and Clearwater. For a more accurate description of dissolved gas, histo
could be used for all reaches where it is available, but generally this is turned off sinc
production and distribution is well modeled.

Sfr Nright⋅ 1 Sfr–( ) Nleft⋅+ Nmix E–( ) e
k

x
v
--⋅–

⋅ E+=

e
k

x
v
--⋅–
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The output_gas token has the effect of setting gas values that exit the reach on bot
of the river to the same value.

 Total Dissolved Gas in the Tailrace

Total dissolved gas supersaturation in the tailrace results from mixing spill water 
water passing through turbines (Fig. 38). The equation is

(102)

where

• F = total flow through the dam in kcfs

• Fs = spill flow in kcfs

• N = tailwater tdg supersaturation (in percent)

• Nfb = forebay tdg supersaturation (in percent)

• Ns = spill water tdg in percent saturation as defined by an empirical or mechanistic
saturation equation.

 Total Dissolved Gas at a Confluence

The tdg at a confluence is determined by the addition of two flows with different tdg levels
equation is

(103)

where

• F i = flow in kcfs in segmenti

• N i = tdg in percent supersaturation in segmenti of the confluences.

 Total Dissolved Gas Dissipation

Total dissolved gas levels above the saturation level are lost from the river as a first
process. This is defined by a total flux equation for a segment as

(104)

where

• Φ = flux of tdg across the air water interface

• N = tdg supersaturation concentration in the segment

• Neq = tdg equilibrium concentration

• A = surface area of the segment

• Kd = transfer coefficient defined

(105)

N Nfb

Fs

F
----- Ns Nfb–( )+=

N
F1N1 F2N2+

F1 F2+
----------------------------------=

Φ AKd Neq N–( )=

Kd

DmU

D
------------- 

 
0.5

=
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where

• Dm = molecular diffusion coefficient of tdg

• U = hydraulic stream velocity

• D = depth of the segment

To express the loss in terms of concentration we divided eq (104) byAD to give

(106)

To put the calculation in units of miles and days, note that one mile = 16.0934 x 104 cm = 5280
ft, and one day = 8.64 x104 seconds. ExpressingU in miles/day andD in feet andDm in cm2/s,
the diffusion coefficient per unit square mile of river is

(107)

where the coefficientk is expressed

(108)

assuming:

• Dm = order1 of 2 x 10-5 cm2s-1

• U = order of 3 cm/s (20 miles/day), note this changes on a daily basis and for eac
reach in the model

• D = order of 900 cm, note this changes on a reach specific basis and is dependen
reservoir elevation

• the constant 700.75 gives the coefficient k in unit of day-1.

Tdg loss rate due to degassing can be expressed as a function of the residence tim
the water entered the tailrace as

(109)

where

• Neq = tdg equilibrium concentration

• N(0) = tailrace concentration defined by eq (102)

• k = dissipation coefficient defined by eq (108)

• t = time in a river segment.

Noting that in the modelsN is in terms of percent above supersaturation we then setNeq = 0.

1. F.A. Richards 1965.

dN
dt
------- Φ

AD
-------- Neq N–( )

DmU

D
3

-------------= =

dN
dt
------- k Neq N–( )=

k 700.75
DmU

D
3

------------- 0.085 /day≈=

N t( ) Neq N 0( ) Neq–[ ]e kt–
+=
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The tdg dissipation coefficient depends on the average depth as defined in eq (108
average depth is variable according to the geometry of the reservoir and the pool elevatio
depth is defined as

(110)

where

• Volume = pool volume at a specific elevation

• W = average pool width at full pool

• L = length of pool.

D
Volume

WL
--------------------=
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 II.6 - Dam Passage

Fish enter the forebay of a dam from the reservoir and experience predation during 
time and during delays due to diel and flow related processes. They leave the forebay an
the dam mainly at night through spill, bypass or turbine routes, or are diverted to barg
trucks for transportation. Once they leave the forebay, each route has an associated m
and fish returning to the river are exposed to predators in the tailrace before they enter th
reservoir. The details of passage through the regions of the dam are illustrated schemati
(Fig. 45).
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Fig. 45 Dam processes showing passage routes and mortality. Forebay delay is
further illuminated in Fig. 46.
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The movement and allocation of fish through the forebay is illustrated in Fig. 46. 
exiting the reservoir in each reservoir time slice, currently two slices per day, are e
allocated as input to the forebay across the dam time slices, currently four slices per da
entering from the reservoir are subjected to possible predation for the duration of the fo
transit. The forebay transit is for mortality modeling and is not counted against travel 
Next, fish are either passed (through dam or spillway) to the tailrace or are delayed for on
time slice in the forebay. Delayed fish are combined in the next dam time slice with
completing the forebay transit. These are passed or are delayed, etc.

Output from the forebay in each dam time slice depends on flow and diel illumina
Allocation to the passage routes depends on spill schedules and passage efficiencies thro
routes.

 II.6.1 -Forebay Delay

Studies of the timing of fish passage at dams indicate that passage occurs mostly a
with fish delaying passage during daylight hours. This delay process is represented in CR
as a simple input-output submodel. Fish enter the forebay at a rate determined by re
passage factors. Fish are assumed to be more susceptible to being drawn into turbine in
spill at night than during the day, and this susceptibility is represented through the flow an
volume of the forebay area occupied by the fish. CRiSP.1 expands this volume in the da
contracts it at night.

Fig. 46Transfer of fish from reservoir to forebay to dam. Diagram
shows allocation of fish from a reservoir time slice of 12 hours to
dam time slices of 6 hours each. Mortality is associated with dam
and spill passage as well as forebay transit and delay.
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The essential elements of this submodel include a forebay volume defined by the fo
depthH, a horizontal length scaleL, which changes with illumination I, and river flowF (Fig.
47).

 Dam Delay Model

(111)

where

• λt = instantaneous probability of passage

• p = proportion of time step during day

• (1-p) = proportion of time step during night

• Vt = upstream river velocity in mi/day

• SPt = proportion of river spilled

• Dt = julian date

• α’s andβ’s = parameters that vary by dam and species.

Probability of remaining during a single time step:

(112)

Fig. 47Variables for dam passage delay model
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Fig. 48Cumulative passage versus dam delay in days at Little Goose Dam
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 II.6.2 -Spill

The spill algorithm represents allocations of spill from flow models (HYDROSIM
HYSSR) through Flow Archive Files or theSpill Schedule  window under theDam menu.

 Flow Archive Spill

When spill is allocated from Flow Archive files, it is identified as a percent of da
averaged flow over multi-day periods. Consequently, for use in CRiSP.1, archive derived
must be allocated to specific days and hours of the day. Special adjustments to spill alloc
in years of low and high water are not implemented at this time. CRiSP.1 considers three
of spill:

Planned Fish Spill is requested by the fisheries agencies. The schedule for this
be obtained from the Flow Archive Files or can be set in the Spill Schedule
Window.

Overgeneration Spilloccurs when electrical generation demand is less than th
available in flow. This is obtained from the Flow Archive File only.

Forced Spill occurs when river flow exceeds powerhouse capacity. This is
calculated by CRiSP.1.

CRiSP.1 allocates spill flows in the following order.

➔First,Planned Fish Spill is allocated. For each period, planned spill is distributed o
scheduled spill days and fish spill hours (within those days) using the following steps.

1. Total modulated flow in the period that occurs in fish spill hours on planned spill da
calculated and designated

flow_available (in kcfs units)

2. The requested spill in a period is designated

spill_request (in kcfs units)

3. Percent spill during Fish Hours is calculated as

spill_daily_percent = spill_request/flow_available

4. If spill_daily_percent > 100%

then spill_daily_percent = 100% of the flow available in the request periods and
rest is discarded and a warning message is generated.

➔Second,Overgeneration Spill identified in the flow models for 2 or 4 week periods 
evenly distributed over all days in the periods. The following calculations are made on a
basis.

1. Overgeneration Spill is added to Planned Fish Spill in Fish Hours every day in a p
to yield total spill.

2. If Total Spill in Fish Hours is now greater than the total flow over the hours then th
cess is distributed over the rest of the day.

3. If Total Spill for the entire day is greater than the total daily modulated flow then th
spill is set to the total daily modulated flow.
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➔Third, Forced Spill occurs when river flow exceeds powerhouse capacity. Forced S
is calculated on the dam time slice periods. This is typically a 6 hour interval. CRiSP.1 us
following logic:

1. Calculate the quantity

 flow - powerhouse capacity/flow = possible forced spill

2. Then, if

possible forced spill > total fish & overgeneration spill

assign total spill = possible forced spill.

Otherwise the forced spill is assimilated into fish and overgeneration spills.

 Spill from Spill Schedule Tool

Planned Spill can be set by specifying spill information with the Spill Schedule  Tool. The
following information is entered:

• fraction of flow spilled

• days over which the spill fraction applies

• days in which actual spill occurs, i.e. the planned spill

• hours of planned spill for the indicated days.

Overgeneration Spill is only applied if a Monte Carlo Mode is used. Forced Spill is calcu
as described above and is applied in both Scenario and Monte Carlo Modes.

 Spill Caps

The maximum allowable planned spill is set by spill caps at each dam. If planned
exceeds the cap then spill is limited to spill cap. Forced spill can exceed the spill cap. Sp
is under theDam menu.

 Spill Efficiency

The fraction of fish passed with spilled water is defined by one of nine possible emp
equations that can be selected by the user. The following are the spill efficiency equation

(113)

where

• Y = fraction of total fish passed in spill

• X = fraction of water spilled

Y a b X⋅ e+ +=

Y a b X⋅ X e⋅+ +=

Y b exp a X⋅ e+( )⋅=

Y b exp a X⋅( )⋅ X e⋅+=

Y b X
a e+⋅=

Y b X 100⁄( )a⋅ X e⋅+=

Y a b lnX e+⋅+=

Y a X⋅ b X
2

c X
3

e+⋅+⋅+=

Y a X 100⁄( )⋅ b X 100⁄( )2
c X 100⁄( )3

e+⋅+⋅+=
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• a andb = regression coefficients

• e = error term (var) selected from random distribution.

The equations and parameters defining spill efficiency (often called “effectiveness” i
literature) are indicated in Table 32. These values were used beginning with the SOR scr
runs of CRiSP.1.

a. Wells Dam is designed to pass smolts preferentially through the spillway system: about 96% of all smo
pass via the spillway. This is modeled by assigning an FGE value of 96% (range 95-97%) at Wells with
zero spill efficiency for years 1991 on.

Table  32 Spill efficiency (% fish passed in spillway /% flow passed in spillway).

Dam Spill equation Reference

Wells zeroa Erho et al. 1988; Kudera et al. 1991

Rocky Reach % pass = 0.65 * (% spill) Raemhild et al. 1984

Rock Island % pass = 0.94 * (% spill) + 11.3 Ransom et al. 1988

Wanapum % pass = 15.42 * ln (% spill)
Dawson et al. 1983

Priest Rapids  % pass = (% spill) ^ 0.82

L. Monumental % pass = 1.2 * (% spill) Johnson et al. 1985.
Ransom and Sullivan 1989

The Dalles % pass = 2 * (% spill)

all other dams % pass = (% spill) -
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 II.6.3 -Fish Guidance Efficiency (FGE) Theory

Guidance of fish into the bypass systems of dams is achieved by diverting fish into a b
slot. Individual fge are specified for day and night at each dam and for each species. In ad
CRiSP.1 can treat fge as constant over time or vary fge with the age of the fish relative
onset of smoltification.

 Constant FGE

Fish guidance efficiency is fixed in time and set for day and night from thefge  window
selected from theDam menu. This is activated by switching “off” theage dependent fge
toggle inRuntime Settings  from theRun  menu (this is the default setting). Note that only th
mean remains constant; FGE can still vary in a stochastic fashion if variance suppres
disabled.

 Age Dependent FGE

Studies on fish guidance at several dams in the Columbia system indicate that fge
with seasons from a number of factors including the water quality and the degree of 
development in the fish, which changes with age. If the age dependent option is selecte
depth in the forebay varies with age, which in turn alters the fge. The algorithm assume
fish above some critical depthz enter the bypass system and fish belowz enter the turbine (Fig.
49). Thus, to define age dependent fge, fish depth in the forebay is defined as a function 
If the surface drops below the level of the bypass orifice fish bypass goes to zero.

The fge is based on the fge model of Anderson (1992). Behavioral and hydraulic fa
affecting fge are combined into a calibration factorDc. In addition, the affect of drawdown on
fge can be expressed in terms of screen depth relative to the surface. The modified equa

Fig. 49 Critical parameters in fish guidance are fish forebay
depthz, screen depthD and elevation dropE. Only fish abovez
are bypassed. Bypass stops when the surface is below the bypass
orifice depth.

Turbine
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Bypass
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Trashrack
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Intake

full pool level
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(114)

where

• fge = fish guidance efficiency

• z = median depth of fish in the forebay at a distance from the dam where fish are
susceptible to being drawn into the intake

• D = screen depth relative to full pool forebay elevation

• Dc = fge calibration parameter

• E = amount the pool is lowered below full pool elevation.

Thus, changes in fge result from changes in fish depth and changes in reservoir elevatio
parameter Dc depends on physical and hydraulic properties of a dam, and behavioral prop
of fish. As such, the term is specific to both a given species and a given dam. In add
separate coefficients are defined for day and night dam passage.

Changes in fge with fish age are represented by changes in fish forebay depth wh
described by a linear equation

(115)

To implement the fge equation define the calibration coefficient

(116)

Combining eq (114), eq (115) and eq (116) the final fge equation is

(117)

where

• t = fish age since the onset of smoltification, see eq (56) on page 42

• t0 = onset of change in fge relative to the onset of smoltification set in the release
window

• ∆t = increment of time over which fge changes

• z0 = initial mean fish depth (at age t equals 0) in the forebay

• z1= final mean fish depth (at aget equalst0 + ∆t) in the forebay

• fge0 = fge at onset of smoltification

• E(t) = elevation drop.

The resulting fge and depth are illustrated in (Fig. 50).

fge 1 exp
0.693–

z
---------------- D Dc– E–( ) 

 –=

t t0<

t0 t t0 t∆+< <

t t0 t∆+>

z t( ) z0=

z t( ) z0 z1 z0–( )
t t0–

t∆
------------ 

 +=

z t( ) z1=

K
1 fge0–( )log

0.693–
---------------------------------

D Dc–

z0
-----------------= =

fge t( ) 1 exp
0.693
z t( )

------------- z0K E t( )–( )– 
 –=
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 FGE Estimation

Spring Chinook

Fall Chinook FGE

Steelhead FGE

A similar approach was taken for juvenile steelhead PIT tagged from the Dwor
hatchery. These fish were detected at Lower Granite, Little Goose, and McNary Dams
assuming travel time and mortality algorithms were calibrated, estimates ofFGE could obtained
for these projects.FGE was estimated using data from 1989-1995 inclusive (Table 33). Bec
of the variation in year-to-year fits, the average of these years’FGE values was used. Note tha
the PIT tag-calibratedFGE value is close to that estimated by NMFS for coordination purpo
but at McNary, for spring chinook, the calibrated value is about 5/6 that of the coordin
value in the System Operation Review. This makes sense in the context of the fyke net arg
made above. Also note that 1994 and 1995 observations are complicated by the fact th
gates were in operation at all three upper projects; this led, for example, to an astonishing
collection rate at Lower Monumental Dam in 1995.

Fig. 50Fge and fish depth over fish age

Table  33 CRiSP.1 estimated FGE for steelhead.

Year LGR LGS LMN MCN

1989 82% 89% n/a 90%

1990 77% 66% n/a 27%

1991 89% 99% n/a 100%

1992 77% 63% n/a 41%

1993 56% 88% n/a 54%

1994 72% 58% 73% 50%

1995 81% 67% 100% 54%

average 76.3% 75.7% 86.5% 59.4%
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51.
Historical FGE Values

Time Variable FGE

The calibration of time varying FGE is not available for CRiSP.1.6.

Bypass orifice and FGE

Fish guidance goes to zero when the surface elevation drops below the bypass 
elevation (Fig. 49). This parameter, designated bypass_elevation, is set in the columbia.desc
file. If bypass_elevation is missing or commented out (with #) the bypass elevation is set
pool floor_elevation and bypass will occur for all reservoir elevations. This function ap
with or without selection of age dependent fge.

Bypass Elevations

The bypass elevations and forebay elevations in feet above sea level (obtained fro
Army Corps of Engineers) are set in thecolumbia.desc file for each dam where a bypass syste
exists.

 Multiple Powerhouses

Bonneville Dam and Rock Island Dam each have two powerhouses that can be op
independently to optimize survival during the fish passage season since each project has 
spillway. Multiple-powerhouse dams can be represented schematically as shown in Fig. 

SOR value 79.0% 79.0% 76.0% 75.0%

Table  34 Bypass and forebay elevations of dams with bypass systems

Dam
Bypass elevation

(ft)
forebay elevation

(ft)

Bon # 1 and 2 65.5 77

The Dalles 149 160

John Day 250.5 269

McNary 330 340

Wells 716 781

Ice Harbor 431.5 440

Lower Monumental 531.5 540

Little Goose 628.9 638

Lower Granite 729 738

Table  33 CRiSP.1 estimated FGE for steelhead.

Year LGR LGS LMN MCN
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In these cases, flow is allocated fractionally as follows:

• Flows are first allocated to planned spill in fish passage hours.

• Remaining flow is partitioned between the primary and secondary powerhouses a
additional spill as follows:

The strategy is to:

• Operate highest priority powerhouse up to its hydraulic capacity.

• Spill water up to another level called the spill threshold.

• Above the threshold, use the second powerhouse.

• Over the second powerhouse hydraulic capacity, spill extra flow.

An example of flow allocations is described as follows (Fig. 52):

Fig. 51Multiple powerhouse configuration showing
allocation of spill and powerhouse flows.

Fig. 52Flow allocation through two powerhouse projects.
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• At level 4 units of flow are put to Fish Spill and 2 units are put through the Firs
Powerhouse.

• At level  Fish Spill has four units of flow, the First Powerhouse is run at its hydra
capacity, which is 4 flow units, and the spillway has 3 units of additional spill.

• At level  the First Powerhouse is at hydraulic capacity, spill flow includes Fish S
and additional spill up to the Spill Threshold and 2 units of flow pass the Second
Powerhouse.

 Fish Passage Efficiency (FPE)

Fish passage efficiency is the percent of fish that pass a project by non-turbine routes
bypass, and sluiceway passage). FPE considers that fish pass mostly during the night a
generally occurs at night. The simple fish routing is illustrated below in Fig. 53. A fractio
the fish are first diverted in to spill water. What remains is diverted into the turbine intake 
fraction of this flux is diverted into the fish bypass system.

The formula expressing FPE considers these independent diversions and accounts
fact that fish may be attracted to spill flow over flows into the turbine. The simplified form
for FPE which considers spill occurs at night and most of the fish pass at night can be exp

(118)

where

• D = fraction of fish that pass dam during spill hours

• Fsp = fraction of daily flow that passes in spill

• SE = fraction of fish that pass in spill relative to the fraction of flow passing in spill

• FGE = fraction of fish passing into turbine intake that are bypassed.

The spill flow, in percent of the total flow, required to generate a given FPE can be expres
arranging eq (118) to give

(119)

Fig. 53Routing of fish for calculation of FPE
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1 - SE*Fsp

FGE

1 - FGE

FPE D F⋅ sp SE⋅ D FGE 1 FspSE–( )⋅ ⋅ 1 D–( ) FGE⋅+ +{ } 100⋅=

Fsp
FPE FGE–

D SE 1 FGE–( )⋅ ⋅
---------------------------------------------=
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 Dam Passage Survival

Fish passing through the dams can take several routes (depicted in Fig. 45). Equ
describing the number of fish that pass through each route in terms of the number that e
dam from the forebay on a particular dam time slice are given below. In each case the mo
and passage efficiencies have deterministic and stochastic parts.

For mortalities and fge, the random elements are represented by additive determinis
stochastic parts in

(120)

where

• x = deterministic part of the random parameter fixed for each species and dam

• x’ = stochastic part of the parameter taken from a broken-stick distribution (see
Stochastic Parameter Probability Density section on page 108) over each dam tim
slice.

For spill efficiency, each equation contains a random term. A typical equation is

(121)

where

• y = spill efficiency

• x = percent flow

• a andb = deterministic parameters

• e = stochastic parameter selected from a normal distribution.

Turbine Survival

The equation for turbine survival can be expressed

(122)

where

• Ntu = number of fish passing in a time increment (6 hrs)

• Nfo = number of fish in forebay ready to pass in the increment

• p = probability of passing during the increment (1 -P1 from eq (112) on page 92)

• mfo = mortality in forebay (see Predation Mortality section on page 47)

• mtu = mortality in turbine passage

• fge = fish guidance efficiency for a day or night period

• Y= proportion of fish passage in spill defined by spill efficiency equation (see eq (
on page 95).

Bypass Survival

The equation for bypass survival is

x x x'+=

y a bx e+ +=

Ntu N fo p 1 Y–( ) 1 mfo–( ) 1 mtu–( ) 1 fge–( )⋅ ⋅ ⋅ ⋅ ⋅=
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(123)

where

• mby = mortality in the bypass.

Transport Survival

The equation for transport survival with fixed transport mortality is

(124)

where

• mtr = mortality in the transport.

Spill Survival

The equation for spill survival is

(125)

where

• msp = mortality in the spill passage.

Parameter Determination for Passage Mortality

Nby N fo p 1 Y–( ) 1 mfo–( ) 1 mby–( ) fge⋅ ⋅ ⋅ ⋅ ⋅=

Ntr N fo p 1 Y–( ) 1 mfo–( )⋅ ⋅ 1 mby–( ) fge mtr⋅ ⋅ ⋅ ⋅=

Nsp N fo p 1 msp–( ) Y⋅ ⋅ ⋅=
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 II.6.4 -Transport Parameters

 Transportation schedule

The schedule of transporting fish from each transport dam depends on the flow, num
each species passing the dam, and the efficiency of separating fish for return back into th
The schedules for transportation, compiled from FTOT annual reports, for the historical 
are given in Table 35.

Table  35 Transport operations for historical data files, 1975-1994.

Year Project Start Date Stop Date
Separation
@ (kcfs)

Criterion

1975 L. Goose 4/10 6/15 none transport all

1976 L. Granite 4/12 6/15 none transport to 50% of run

L. Goose 4/10 6/15 none transport to 50% of run

1977
L. Granite 4/15 6/5 none transport all

L. Goose 4/29 6/16 none transport all

1978
L. Granite 4/4 6/21 none transport all

L. Goose 4/10 6/21 none transport all

1979

L. Granite 4/11 7/4 none transport all

L. Goose 4/17 7/4 none transport all

McNary 4/9 8/24 none transport all

1980 L. Granite 4/3 7/7 none transport all

L. Goose 4/7 7/7 none transport all

McNary 4/3 9/22 none transport all

1981
L. Granite 4/2 7/30 none transport all

L. Goose 4/7 7/24 none transport all

McNary 3/30 9/11 none transport all

1982
L. Granite 4/8 7/29 85 full trans @ 80% yearlings

L. Goose 4/10 7/22 85 full trans @ 80% yearlings

McNary 3/30 9/24 220 full trans @ 80% yearlings

1983
L. Granite 4/3 7/30 85 full trans @ 80% yearlings

L. Goose 4/5 7/8 85 full trans @ 80% yearlings

McNary 5/30 9/22 220 full trans @ 80% yearlings

1984
L. Granite 4/1 7/26 none transport all

L. Goose 4/5 7/28 85 full trans @ 80% yearlings

McNary 4/16 9/28 220 full trans @ 80% yearlings
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1985
L. Granite 3/28 7/23 none transport all

L. Goose 3/30 7/23 85 full trans @ 80% yearlings

McNary 4/6 9/26 220 full trans @ 80% yearlings

1986
L. Granite 3/27 7/24 none transport all

L. Goose 4/5 7/3 85 full trans @ 80% yearlings

McNary 3/27 9/26 220 full trans @ 80% yearlings

1987
L. Granite 3/29 7/31 none transport all

L. Goose 4/6 7/4 100 full trans @ 80% yearlings

McNary 3/28 10/29 220 full trans @ 80% yearlings

1988
L. Granite 3/28 7/26 none transport all

L. Goose 4/12 7/23 100 full trans @ 80% yearlings

McNary 3/29 9/22 220 full trans @ 80% yearlings

1989
L. Granite 3/29 7/30 none transport all

L. Goose 4/8 7/11 100 full trans @ 80% yearlings

McNary 3/27 9/20 220 full trans @ 80% yearlings

1990
L. Granite 3/27 7/26 none transport all

L. Goose 4/12 7/21 100 full trans @ 80% yearlings

McNary 4/1 9/14 220 full trans @ 80% yearlings

1991
L. Granite 3/27 7/26 none transport all

L. Goose 4/12 7/20 100 full trans @ 80% yearlings

McNary 4/1 9/14 220 full trans @ 80% yearlings

1992
L. Granite 4/27 10/31 none transport all

L. Goose 4/3 8/31 100 full trans @ 80% yearlings

McNary 3/25 9/30 220 full trans @ 80% yearlings

1993

L. Granite 4/14 10/31 none transport all

L. Goose 4/15 10/31 none transport all

L. Mo. 5/3 10/31 none transport all

McNary 4/15 11/24 none transport all

1994

L. Granite 4/5 10/31 none transport all

L. Goose 4/5 10/31 none transport all

L. Mo. 4/6 10/31 none transport all

McNary 4/8 11/28 none transport all

Table  35 Transport operations for historical data files, 1975-1994.

Year Project Start Date Stop Date
Separation
@ (kcfs)

Criterion
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The above table indicates conditions under which fish areseparated and returned to the
river. While it is assumed that transportation always benefits steelhead juveniles, many 
believe that smaller migrants (chinook, coho, sockeye) benefit from transportation when 
are low, but are better off in the river when flows are higher and conditions are presum
better.

If a dam has aseparation trigger, when flows exceed that value, smaller fish are separa
from the larger steelhead smolts and are returned to the river. This separation con
according to thecriterion given in the table. For example, if the criterion is “full transport 
80% yearlings”, this means that fish are separated under high flow conditions until
estimated that 80% of yearlings have already passed the dam. After that point, all collect
are transported regardless of flow condition.

There is great variability in separator efficiency: the idea is to retain steelhead for tran
and return other fish to the river. As a rule of thumb, CRiSP.1 uses the “80/20” criterion (T
36), which means that 80% of steelhead are successfully retained, and 80% of smaller f
successfully returned to the river, but 20% of steelhead also escape to the river, and 2
smaller fish are retained for transport.

Table  36 Separation efficiencies at transport projects.

Stock
retained for
transport

diverted to
river

Steelhead 80% 20%

Yearling Chinook 20% 80%

Subyearling Chinook 20% 80%
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 II.7 - Stochastic Processes

CRiSP.1 provides the ability to vary parameters over a run. This allows a representa
random factors. The randomness is incorporated in different ways for flow, dam pas
reservoir mortality and travel time. The approach is to describe specific parameters as ha
deterministic part and a stochastic part. A deterministic part may change with the indepe
variables that determine the parameter but the value obtained does not change from one
run to another if all factors are the same. The stochastic part changes each time it is cal
in CRiSP.1 or between model runs. The value of the stochastic part is obtained from a r
number distribution function using a “broken-stick” distribution function. This is descri
along with deterministic and stochastic parts of the parameters.

 II.7.1 - Stochastic Parameter Probability Density

Variation in many of the stochastic rate parameters is described by abroken-stick
probability distribution function (pdf). This is a simple function based on a piecewise li
distribution. The probability density function and the cumulative density function are illustr
in Fig. 54. It is described using the 0, 50 and 100% cumulative probability levels.

Random deviates for this broken stick density distribution are obtained from the follo
transformation formula

(126)

where

• x = unit uniform random deviate range 0 < x < 1

• yl = lower limit of the distribution range

• ym = distribution of the median value

• yu = upper limit of the distribution range.

Fig. 54Probability function (pdf) and cumulative function of the broken stick
probability distribution
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Although the distribution uses the median, the broken-stick input windows in CRiSP.
the mean value since most data reports include a mean in addition to the minimum
maximum values. The median is estimated from these three measures as

(127)

assuming the mean of the distribution is equal to the average of the mean of the lowest 
the distribution and the highest 50%. These are simply the average of the minimum and m
and maximum and median, respectively.

Note that in a skewed distribution the mean and median are different. The result is th
mean specified by the usermust fall in the middle two quartiles of the distribution, i.e. if the us
specifies a minimum of 0 and a maximum of 100 for some distribution, the mean mu
between 25 and 75, inclusive. If the user specifies a distribution outside this range, CRiSP
post a message to that effect in the message window and will direct the user to choose 
that lies in the acceptable range.

 II.7.2 - Stochastic Parameters

Migration

Variability in the migration rate is determined by the equation

(128)

where

• r(t) = determined from eq (51) on page 39

• V(i) = variance factor which is different for each release i.

The termV(i) is drawn from the broken-stick distribution. The mean value is set at 10
representing the deterministicr(t) and the upper and lower values are set with sliders under
migration rate variance item in theBehavior menu.

The variance factor assumes that variability in migration velocity relative to water velo
is associated with a particular stock of fish. Studies of travel time support this assumption
particular stocks exhibit their own unique relationship with flow.

Flow

In the Scenario Mode, daily flow variations are described by a random process in head
flow. Details of this process are described in the Headwater Modulation section on page

Dam Passage

Variability in dam passage parameters is applied on each dam time slice, (typica
hours). The variability is generated from the broken-stick distribution and is applied to
following variables:

• bypass mortality

• spill mortality

ym

4y yl– yu–

2
---------------------------=

r i t( ) r t( )V i( )=
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• turbine mortality

• transportation mortality

• day / night fge

• spill efficiency.

 II.7.3 - Scales of Stochastic Variability

The scales over which stochastic variability are applied is given in the table below.

Table  37 Model probability density functions

Process Equation pdf Scale

Migration rate variance eq (55) broken-stick release group

Flow in Scenario eq (16) Normal 12 hrs

FGE & dam mortality eq (120) broken-stick 6 hrs

Spill efficiency eq (121) Normal 6 hrs
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III. Calibration

 III.1 - Calibration Overview

CRiSP.1 is a composite of individual, integrated, process submodels that jointly dete
smolt migration and survival.

The model has many parameters which must be determined. The parameter
ecological meaning can often be determined from data sets from other related studie
systems. For the empirical parameters, the model or a submodel are are calibrated to 
field data using a variety of mathematical (optimization) fitting methods. The end result is
through the parameter determination and calibration process, diverse theories and data 
synthesized into a consistent picture of the process of fish migration and survival throug
river system.

Environmental variables describe the observable state of the environment in whic
live. These variables have been determined from historical records dating back to 1970
variables and back as far as 1937 for some of the variables. Future values of these varia
assessed from runs of hydromodels and management-derived scenarios of river operatio
environmental variable sets must be determined before the model can be calibrated.

Fish passage observations involve a variety of data, extending back several decades
passage timing and survival of fish through various segments of the river and hydrosystem
ranges from relatively small-scale information on the passage of individual groups of fi
individual dams to system-wide estimates of passage and survival of species over specific
Observations include brand release studies conducted from 1970’s and 80’s and PIT tag
conducted beginning in the late 80’s. These data sets yield two levels of information. The
observations provide passage numbers and timing at individual dams as well as returns o
to dams and collection points. These raw numbers can be further reduced to estima
migration rates and fish survival between points in the river and in some cases colle
efficiencies at dams.

After all possible variables and parameters have been determined and after any sub
which can be calibrated externally to the model have been calibrated, the parameters re
reservoir passage survival and travel time are calibrated within the model. That is, the m
predicted survivals and travel times are calibrated to NMFS survival estimates and to P
passage data. In this way, the whole model is ultimately calibrated to data.

The CRiSP.1 model contains a number of different theoretical constructs that ca
selected at run time. The selection of which construct to use depends on the ava
information, the effect of the feature on the calibration, and its ecological soundness
calibration of the model is only specific to a particular choice of theoretical constructs.

 III.1.1 - Parameter Determination and Calibration techniques

Ecological model parameters are determined (estimated) from both field observation
laboratory studies. Estimates made from field observations (such as fish passage tim
mortality rates) are used with the corresponding environmental variables (Fig. 55). Esti
made from laboratory experiments are analyzed assuming the corresponding labo
conditions and are used to infer the relevant ecological parameters. For example, the est
of mortality from gas bubble disease is made based upon laboratory experiments.
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Parameter determination involves mixing results from laboratory experiments, iso
field studies on aspects of migration, and system-wide studies of survival and tim
Parameters are determined directly from studies where possible. Then the calibration pr
in a hierarchy of steps where submodels are calibrated first (where possible) and fina
migration (travel time parameters) and survival (predation parameters) submode
calibrated. The sequence which is reflected in the chapter organization is: Rive
Environmental Description, Flow Processes, , Dam Processes and finally migration pro
and Reservoir Mortality. The final two steps are in part connected (e.g. in the model, s
migration can result in higher predation mortality) and so are calibrated iteratively until 
converge.

Goodness-of-fit

In calibration, the parameters are adjusted so that the model (or a submodel) predictio
fits the observations according to statistical criteria within ecological constraints. A varie
goodness-of-fit measures are applied in the calibrations. The choice of method depends
type and quantity of data and the dimensions of the data being fit. Where possible gra
examples are given along with statistical measures of the goodness-of-fit. The follo
approaches are used.

• Least Squares, 2 dimensional regressions (Press et al. 1992) used for

- tdg supersaturation mortality rates vs. time

- size vs. mortality rate

- spill efficiency equations

• Nonlinear regression using the Gauss-Newton algorithm to minimize sums of squ
(SPLUS 1991) used for

- tdg supersaturation mortality rate vs. tdg level

- prediction of migration rate parameters vs. flow and fish age

• Hyperbolic “amoeba routine” (Press et al. 1992) used for

- tdg mortality rate vs. tdg level

• Fourier series analysis (SPLUS 1991) used for

- determining scenario mode flow modulators

• Maximum likelihood estimators via a Marquardt method or a Conjugate Gradient
method are used for

- determining migration rate parameters

Fig. 55Calibration process involves using passage and environmental
data to estimate the model ecological parameters

Environmental

Conditions

Fish Passage

Observations

Ecological

Variables

Calib ration process us ing field  data
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- determining predation rate parameters

In cases with limited data, statistical techniques might not converge to a unique b
solution. In this case the calibration is assisted by selecting one of the parameters wit
range inferred from ecological constraints, and then calibrating the remaining parameter

 III.1.2 - Parameter Determination and Calibration status

The calibration process involves fitting the submodels to data using goodness-
measures. First environmental condition variables are ascribed and ecological paramet
calibrated in a hierarchy that can be organized according to categories of similarity
interdependency.

 Parameter Determination and Calibration Status by Type

Environmental variables and ecological parameters are listed below along w
description of the state of their calibration.

• Environmental conditions (define river condition)

- River description parameters relating geometry of river and dams. These param
are fairly well described and no further improvements of these parameters are
expected at this time.

- Headwater parameters define the river environment flow and temperatures. Flo
data exist for years from 1960 through 1999. Temperature in headwaters exist
from 1966 through 1999. These parameters are fairly well described and no
improvements are expected at this time (other than adding new data for each 
year).

• Passage observations (define movement and survival of fish)

- Release parameters include the number of fish released at each site at each d
beginning and end of smoltification onset

- survival and passage timing: information on passage timing and survival of fish
through the hydrosystem are adjusted according to model run specifics.

• Ecological parameters (characterize ecological interactions)

- Total dissolved gas supersaturation parameters relate the buildup of gas as fun
of spill, flow, and temperature. These have been calibrated with data current
through 1999.

- Age at smoltification initiation (smolt_onset) and completion (smolt_finish) whic
are release-specific and also may depend on release date itself. Release infor
along with the predicted passage information at dams and reaches comprises
passage data in the model. These parameters are critical to survival estimates
are under further study.

- Dam parameters describing passage mortality at dams and fish guidance effici
have been derived from two decades of studies including results obtained from
recent PIT tag studies.

- Transportation mortality calibration depends on the transport benefit ratio and i
river survival estimates. Although initial estimates have been obtained, both of
these factors are under further analysis.

- Relative predator densities have been derived from CPUE data for the Snake a
lower Columbia. This includes base densities for 1990 and prior as well as yea
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updates to account for the effects of the pikeminnow removal program. Mid-
Columbia densities are in progress. Densities for other reaches need work.

- Migration rate parameters have been calibrated for spring/summer and fall chin
and steelhead using data from PIT tag studies.

- Predator activity has been derived from pikeminnow consumption information fr
John Day reservoir for spring and fall chinook and steelhead.

- Predator temperature response parameters have been calibrated for spring/su
and fall chinook and steelhead using NMFS survival estimates.

 Parameter Determination and Calibration Status by Submodel

The CRiSP.1 submodels have been calibrated individually or within the model. 
sources are mentioned in the following list. See also the relevant sections in Chapter 2 
as the following sections on calibration of gas supersaturation and calibration of migratio
predation rate parameters.

Travel Time (Migration Rate)

The travel time submodel was calibrated for fall chinook, spring chinook, and stee
using tagging data from the entire river system and over the entire migration season
separate calibrations steps were applied: one to measure the spread of fish as they
through the reservoir, and the other to measure the change in relative migration velocit
fish age. The first used marked, individual stock releases over a short period of time, a
second used marked and recaptured fish over entire seasons.

Predation Survival (Predation Rate)

Predator-prey interactions including predator temperature response were calibra
NMFS survival estimates for fall chinook (1995 - 1999), spring chinook (1993 - 1999),
steelhead (1994 - 1999). Predator activities in the forebay and main reservoir were set
ratio of smolt consumption by pikeminnow in those zones.

First, the predator densities were derived from predation studies in John Day Reservo
information on the predation index for each of the major reservoirs.

Gas Bubble Disease

The rate of mortality was calibrated from dose-response studies conducted in both fie
laboratory conditions.

Dam Passage

Diel passage elements of CRiSP.1 were calibrated from hydroacoustic and radio-ta
studies at dams. Fish guidance efficiency and spill efficiency were calibrated from a num
studies at a variety of dams. Fish guidance efficiency can be set to change with fish a
reservoir level or it can be set constant over the year. Mortalities in dam passage
determined from mark-recapture studies at dams.

Transportation Passage

Separation of large and small fish in transportation was applied from general inform
on the efficiency of the separators in the transportation facilities at dams. A transpor
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mortality was estimated for each species. In addition, time to transport fish through the
system was specified.

Total Dissolved Gas Supersaturation

Total dissolved gas (tdg) supersaturation models were calibrated with data from the 
Corps and includes new information collected in the 1992 drawdown study in Lower Gr
Reservoir and Little Goose Reservoirs and from total dissolved measurements from 1
1999.

Flow

Headwater flows in the Scenario Mode were calibrated from information on stream f
provided by the USGS. In Monte Carlo Mode, modulators of the period average hydro-m
flows were calibrated with daily flow records at dams.

Water Velocity

Water velocity requires information on reservoir and geometry. The relationship bet
geometry and elevation and free stream velocities were determined from Lower Gr
Reservoir drawdown studies.

Stochastic Processes

The ranges for variables used in the Monte Carlo Mode have been calibrated to av
data in the above mentioned studies.
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 III.2 - Total Dissolved Gas Calibration

 WES linear and exponential curves

Most calibration work is based on published documents by WES (Waterways Exper
Station, U.S. Army Corps of Engineers). Some of WES’s calibrations were not used beca
structural modifications to the dam or more available data that suggested a different dyn
These empirical equations depend on spill alone and hence if there are significant struct
operational changes to a specific dam, new calibrations would most likely needed.

For LGR and TDA, the Feb 1997 WES reference gave the production curve in the ter
qs = discharge per spillbay. Here qs was converted to Qs/n --assuming the total discharge, Qs,
was uniformly distributed between the number, n, of spillbays. In addition, the numb
spillbays in use for Lower Granite was different for 1995 and 1996. In general, becau
possible construction or repairs at a dam, the number of spill bays will have to be set sep
for each year.

a. In CRiSP.1 an upper bound of roughly 145% was added to these equations.

Table  38  Lower Snake and Lower Columbia Dams, gas production curves using linear o
exponential models.

Project %-TDG = Reference

BON WES Apr 1996

TDA juvenile pattern (night) WES Feb 1997

adult pattern (day) WES Feb 1997

JDA juvenile pattern 1998
(with new deflectors)

Shaw 1998

adult pattern 1998 (with
new deflectors)

Shaw 1998

Before 1998a WES Feb 1997

MCN WES Feb 1997

IHR 1998 (with 2 additional
deflectors)

Shaw 1998

1997 (with new deflec-
tors)

Shaw 1997

Before 1997 WES Feb 1997

LMN juvenile pattern (night) Shaw 1998

adult pattern (day)a Shaw 1998

LGS juvenile pattern (night) WES Feb 1997

adult pattern (day)a WES Apr 1996

LGR (1996) WES Feb 1997

(1995) WES Feb 1997

0.12 Qs⋅ 105.61+

124.3 - 9 exp 0.273– Qs/12⋅( )⋅

124.3 - 9 exp 0.273– Qs/23⋅( )⋅

128.4 - 24.4 exp 0.00812– Qs⋅( )⋅

124.6 - 26.2 exp 0.0209– Qs⋅( )⋅

0.203 Qs⋅ 108.5+

0.0487 Qs⋅ 114.9+

120.9 - 20.5 exp 0.023– Qs⋅( )⋅

130.9 - 26.5 exp 0.022– Qs⋅( )⋅

138.7 - 79 exp 0.0591– Qs⋅( )⋅

132.7 - 24.6 exp 0.022– Qs⋅( )⋅

131.2 - 36.1 exp 0.059– Qs⋅( )⋅

131.3- 32.0 exp 0.01985– Qs⋅( )⋅

0.53 Qs⋅ 100.5+

138.0 - 35.8 exp 0.10– Qs/6⋅( )⋅

138.0 - 35.8 exp 0.10– Qs/8⋅( )⋅
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In the cases where the earlier WES reference was used, for Bonneville Dam, L
Monumental juvenile pattern, and Little Goose juvenile pattern, there was no 
recommendation in the 1997 documentation; the authors in fact felt that there was not a
fit available. The equations given in the older reference were nevertheless taken as a s
point for the new gas production model.

For the mid-Columbia dams, the “best” fitting of the three empirical gas produc
equations was chosen based on available hourly tailwater TDG data from 1995-1998
bounded exponential performed well in all cases. The results of this calibration are s
below.

There was no data for Hells Canyon Dam and so a “generic” set of coefficients was
for this dam. The bounded exponential model, the one predominantly used for the other
was chosen and the coefficients were set for moderate gas production.

These calibrations are based on spill and typically represent the river best in mode
high levels of spill. All gas production curves break down when spill gets to be only a fewkcfs.
In this case the spill flow retains the dissolved gas level of the forebay.

 Exponential Empirical Equation

The parameters in Table 41 were obtained by fitting the exponential submodel to the 
curves. This is the backup model under some circumstances for certain dams.

Table  39  Mid-Columbia Dams and Dworshak dam gas production curves
using linear or exponential model

Project %-TDG =

PRD

WAN

RIS

RRH

WEL

 Night

 Day

CHJ

DWR

Table  40 Hells Canyon Dam gas production curves using exponential model

Project %- TDG =

HCY

130.4 - 25.2 exp 0.01045– Qs⋅( )⋅

139.4 - 26.9 exp 0.00915– Qs⋅( )⋅

141.1 - 26.9 exp 0.00874– Qs⋅( )⋅

137.6 - 21.4 exp 0.00733– Qs⋅( )⋅

0.47 Qs⋅ 107.9+

0.15 Qs⋅ 107.2+

140.1 - 34.8 exp 0.0241– Qs⋅( )⋅

135.9 - 71.1 exp 0.4787– Qs⋅( )⋅

138 - 36 exp 0.02– Qs⋅( )⋅
117 CRiSP.1.6 TCVDRAFT



the

ed

vong
aphs
house
codes

90) to
nts on
 Hyperbolic Empirical Equation

This model is retained for backward compatibility. The calibration is applied to 
hyperbolic empirical model given by eq (90) on page 73 where

• Ns = percent supersaturation above 100%

• Fs = spillway flow volume in kcfs

• a, bandh = coefficients specific to each dam, derived from tdg rating curves provid
by the Army Corps of Engineers.

Data for fitting these parameters were obtained from rating curves provided by Boly
Tanovan of the Army Corps of Engineers, North Pacific Division, Portland, OR. The gr
showing observed tdg concentrations in supersaturation for spill flows were copies of in-
documents (unreferenced and unpublished). The graphs were identified with the 
NPDEN-WC, DLL/KPA, 8MAR79. The ruling of the rating curves allowed a precision of
kcfs and % saturation.

The parameters in Table 42 were obtained by fitting the hyperbolic submodel of eq (
the rating curves using a nonlinear “amoeba” routine from Press et al. (1992). Constrai
fitted parameters were

0 ≤ a ≤ 50

0 ≤ b ≤ 0.12

0 ≤ h ≤ 100.

The current values apply to the hyperbolic gas model

Table  41 Values for exponential empirical tdg model and last year of its use

Dam a b h

Default 30.0 .025 .030

Little Goose 45.48 0.0106 0.03

Dworshak 34.5 0.0073 0.03

Hells Canyon 32.35 0.025 0.03

Table  42 Values for hyperbolic empirical tdg model

Dam a b h

Default 30.0 0.025 6.00

John Day to 95 45 0.025 6.00

John Day 96, 97 36.11 0.025 6.00

John Day 98 25 0.0247 7.67

0.5±
0.1±
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 GasSpill 1 and GasSpill 2 Mechanistic Equations

The mechanistic tdg saturation submodel was calibrated using flow/spill/gas satur
data from the rating curve data 1984 to 1990 at most projects. (This data set was supp
Tom Miller of the Walla Walla District of the U.S. Army Corps of Engineers.) The d
originated from the Columbia River Operations Hydrological Monitoring System (CROHM
data base. At each dam the data consisted of: hourly flow and spill, forebay saturation, fo
elevation, tailrace elevation, and temperature, all measured throughout the summer. Us
same gas dissipation mechanism as was used in earlier versions of CRiSP.1, the tailr
saturation was back-calculated from the next dam downstream.

For each point in time the three parametersa, b, andc below were estimated using a
multiple linear regression of the equation definingK20 in terms of the energy loss rate, th
forebay concentration, and the entrainment coefficient. The mechanistic model for GasS
assumes that these parameters are related as is given by eq (92) on page 73 where

• K20 = entrainment coefficient

• E = energy loss rate

• Cf = forebay concentration

• a, b, andc = coefficients calculated from multiple linear regression of data in Table

For each damK20 is calculated from data using:

(129)

where

• T = water temperature in the forebay in degrees C.

• S = spill in kcfs

• W = spillway width (gates x width/gate)

• L = stilling basin length in feet

• Nfb = forebay gas saturation

• Nsw = back-calculated spillway gas saturation

where

• sgr = specific gravity of roller (usually 1)

• α = 0.0295

• d = stilling basin depth in feet

• y0 =

• H = hydraulic head in ft is obtained from information in Table 44

• G = 32.2 (gravitational constant)

and

No data were available for Wanapum Dam thus preventing calibration of both Wana
and Rock Island, the dam immediately upstream. In these cases the initial calibration of 
Resources Engineers Inc. (WRE 1971) was used as the calibration.

K20 1.028
20 T– S

W L ∆⋅ ⋅
---------------------

P Nfb–

P Nsw–
-------------------log⋅ ⋅=

P B sgr α 0.5 d y0–( )⋅ ⋅ ⋅( ) 0.25 α d y0+( )⋅ ⋅( )+ +=

S W 2GH⋅( )⁄

∆ P 0.25α d y0+( )+3 P 0.25α d y0+( )–3–=
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The spill program of 1994 presented an opportunity to recalibrate GasSpill param
using up-to-date data at a variety of spill levels, including some observations at very high 
that had not previously occurred. Daily average gas levels were compared to those es
using previously calibrated GasSpill parameters, and parameters were adjusted on a 
dam basis to bring model predictions into closer agreement with observed data. Re
changes were quite small, but the improvement of fit was noticeable; current estimate
observed gas levels are shown for several points in the system in Fig. 56. Note that in a
graphs the predicted and observed saturation tracks do not differ significantly (chi-sq
goodness-of-fit test, in all cases p>0.05).

.

Table  43 Parameters for Gas spill model equations

Dam L
Basin
Floor
Elev. ga

te
 w

d

# 
ga

te
s

sgr a b c

Default BON GasSpill 1 2.47 1.11 -1.1

Default GasSpill 2 3.31 0.41 -0.032

TDA 170.0 55.0 60 23 0.50 37.00 3.255 -0.394

IHR 178.0 304.0 60 10 1.0 28.05 1.38 -0.28

LMN 218.7 392.0 50 8 1.0 -2.55 4.53 0.018

WEL 30.0 670.0 46 11 1.0 27.84 2.40 -0.28

Table  44 Variables for reservoir geometry, in feet. Dam abbreviations correspond to
dams in Table 42.

Dam
Max.

Forebay
Elevation

Full Pool
Depth at

Head

Full Pool
Forebay
Depth

Elevation
Spillway

Crest

Normal
Tailwater
Elevation

BON 82.5 68 93 24 16

TDA 182.3 85 105 121 80

JDA 276.5 105 149 210 163

MCN 357 75 105 291 269

IHR 446 100 110 391 343

LMN 548.3 100 118 483 440

LGS 646.5 98 140 581 540

LWG 746.5 100 140 681 638

PRD 488 82.5 101.0 416

WAN 575 83.5 116 497

RIS 619 54 84 558

RRH 710 93 108.4 614

WEL 791 72 1111 707.4
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CRiSP1.6 was used to determine the optimal value of the parameter. This meth
computationally intensive, but has certain advantages over simpler regressions. In par
water travel time is computed based on river geometry and input information on flows
elevations and does not need to be input into the regression for each simulation.

For each dam in turn, CRiSP.1.6 was run with historical data sets from 1995 through
and for each year, a range of k_entrain values between 0 and 1 was used to obtain total d
gas (TDG) output at the forebay of the downstream dam. The output was compared to 
data on a day-by-day basis. CRiSP.1 produces values for the left and right side of the se
These values were averaged to produce a single value for the downstream forebay.

To examine the k_entrain values at PRD and IHR, both of them were varied simultane
since they both contribute to mixed waters at the confluence of the Snake and Columbia

The overall success of the k_entrain parameter for each of the model runs was dete
by taking the mean sum of squares for all days when there was both an observation and 
prediction:

Fig. 56Comparison of observed and modeled gas supersaturation for 1994 data. Lower Gra
Pool Chi-square = 1.88, p>0.05. Ice Harbor Pool Chi-square = 3.38, p>0.05. Priest Rapids 
Chi-square = 2.01, p>0.05. Bonneville Pool Chi-square = 1.08, p>0.05.
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A second test examined the sensitivity ofθdam to a range of changes in k_entrain. Th
involved a series of runs for various levels ofθdam and k_entrain.

K_entrain values change from year to year. In the tables that follow, the optim
k_entrain values for each year and dam are shown. In Table 31 on page 78, the analy
restricted to values of TDG > 100% for both the observed DART values and the CRiSP.1 
predicted. IHR, PRD and BON were not evaluated.

K_entrain is an important parameter in some cases. Where CRiSP.1 is poor at fittin
data, even with k_entrain, other avenues need to be explored: values of other gas para
accuracy of flow and spill archives, accuracy of gas archives, functional form of the entrain
coefficient etc.

Examples of the optimization profiles for 1998 are shown in Fig. 57.

Sensitivity of gas production to theθdam values is very limited. Variation in the MSS wa
1% or less across the range of theta from 0 to 10 for all the dams tested in 1997 and 19
only significant sensitivity was for WAN in 1995 (11%) and 1997 (7.5%).

Fig. 57Example of optimization of k_entrain values for 1998.
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 III.3 - Predation Rate Parameter Calibration

The final parameter sets to be calibrated are those for predation rate (including tempe
response) and migration rate. Both of these sets are calibrated by using optimization rou
adjust parameters so as tobest fitthe model to relevant data.

Though travel time is not explicitly represented in the predation rate, it clearly factors
overall predation mortality in the model (since slower migrants have more opportuni
become pray). In the same way, predation rate implicitly effects median travel time in the m
(since a higher predation rate has greater effect on the slower migrants). For this reas
travel time and predation rate calibrations are run alternately until both calibrations 
converged. Since we only have survival data for one stock from each species (spring ch
fall chinook, steelhead), the predation rate parameters found by this process are then u
all stocks in that species.

For each stock, the predation rate equation is based on the following parameter
equations (64) and (66)):

• ,  and  = predator activity in the river zones

• Cmax,  and Tinf = temperature response equation parameters

• P =predator density (by zone in each river segment)

• T = water temperature in the river segment.

Note that Cmax multiplies the three activity coefficients (depending on river zone) and t
can be thought of as scaling them. It was never intended that Cmax, ,  and

 be calibrated simultaneously (as that would confound the optimization).

 Survival Calibration Process

For survival/predation parameter calibration, we produce amodeled survival Sm

corresponding to each pointSo of the observed NMFS survival data. This relationship can
expressed as

. (131)

The model-estimated survivals depend both on parameters that are fixed (  e.g. 
temperatures, predator densities as well as the migration rate parameters) and on the p
rate parameters ( ) that are adjusted to calibrate the modeled survival to the surviva

The calibration process utilizes a conjugate gradient method (an optimization techniq
minimize the sum-of-squares difference between the survival data and the model-pre
survival in eachsurvival reach j for each cohort (or release)i in each year:

(132)

where the weights are given (as they are in Hockersmith et al. 1999) as

α forebay αreach αtailrace

α

α forebay αreach
αtailrace

Si j,
o Si j,

m Θ f ixed Θpred,( ) εi j,+=

Θ f ixed

Θpred

SS Wi j, Si j,
o Si j,

m–( )2⋅
i j,
∑

year
∑=
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The survival data in the numerator of the weighting counteracts the tendency of 
survivals having lower variances. This weighting also diminishes the relative weight o
lower survivals (which are thought to be less accurate).

 Survival Data

The data consists of NMFS survival estimates and standard errors for both wild
hatchery released fish released.

The survival estimates for spring chinook consists of fish released above the Lower G
Reservoir on multiple days in 1993 - 1995 and for releases regrouped (by week) in the
tailrace for 1995 - 1998. Estimates for survival are given from release (RLS) to Lower Gr
(LGR), LGR to Little Goose (LGS), LGS to Lower Monumental (LMN) and LMN to McNa
(MCN). A survival reach is defined as being from tailrace to tailrace. Not all data exists for
years.

The survival estimates for fall chinook consists of fish releases regrouped (by week) 
LGR tailrace for 1995 - 1998 with estimates to LGS and LMN.

The survival estimates for steelhead consists of fish releases regrouped (by week)
LGR tailrace for 1995 - 1998 with estimates to LGS, LMN and MCN and for releases regro
(by week) in MCN tailrace for 1997 - 1998 with estimates to John Day (JDA) and Bonne
(BON) tailrace.

 III.3.1 - Parameter Determination and Calibration

 Predator Densities

The predator densities have been determined (by zone and reach) from CPUE ind
described in Section II.4.2. We will revisit this below in Section III.3.2 because of difficul
encountered in the calibration process due, in part, to the high variability of the pre
densities between reaches.

 Predator Activity Coefficient Determination

Since the survival data is given by reach, from tailrace to tailrace, there is currently no
to differentiate predation occurring in the forebay from that occurring in the reach (pool
tailrace (or from mortality due to nitrogen supersaturation or dam passage). If we we
calibrate the three activity coefficients  simultaneously, it is likely th
the calibration tool would allocate all of the predation activity to the one segment of the m
(e.g. forebay) that most closely mimics the survival data.

To avoid this problem, we set , and  in theratio of consumption rates
(per predator) of smolt by pikeminnow as found by Vigg et. al (1991). That is we

, and  for spring migrants (chinook and steelhead) (s
Table 17 on page 52). and we set , and  (see Table 18

Wi j, wi j, wi j,
i

∑ 
 ⁄= wi j,

Si j,
o( )2

Vari j,
----------------=

αreach α forebay αtailrace, ,

α forebay
αreach

α forebay 15.6= αreach 12.7=

α forebay 20.0= αreach 12.4=
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page 52) for fall chinook. Calibration of the parameter CMAX then scales the activity
coefficients.

The tailrace mortality is handled differently in the model (see Zone Specific Formula
of the Predation Model section on page 48). In the calibration, we set  so that ta
mortality would be 1% for spring migrants and 2% for fall migrants (set by PATH) if 
temperature was at its mean (10.9oC for Spring, 17oC for Fall) and the tailrace predator densit
was at its mean (15000 preds/km2). The tailrace predations will, of course, vary since the act
temperatures and densities vary.

 Temperature Response

Vigg and Burley (1991) provide laboratory results showing the activity respons
predators (pikeminnow) to temperature. We thought it is important to try to see this tempe
response in the survival data and so did not wish to use their parameter values.

However, the survival data for spring chinook and steelhead, for example, correspond
to temperatures in the 7oC - 14oC range (mostly 8oC - 12oC) and so cannot be used to predi
the upper asymptote of the sigmoidal response. It turned out that many sigmoidal curves
produce a nearly-optimal fit. To counter this problem, we chose that the 95% lev
consumption should correspond to a temperature of 15oC (22oC for Fall). This is reasonable
given the temperature range of the survival data.

The results from these fixed 95% level runs were used to provide good initial values fo
final calibration runs (without the fixed point). But those runs also can provide justifia
results.

 III.3.2 - Predator Density - Temperature Response Interaction

The most challenging problem of the spring chinook calibration effort related to
interaction between the predator density data and the temperature response equat
parameters in the spring chinook calibration. Three factors combined to cause the difficu

• lower than expected (by the model) survival data from Lower Monumental through
McNary

• lower than average predator densities in Ice Harbor and McNary reaches

• slightly higher water temperatures in Ice Harbor and McNary than between Lower
Granite Reservoir and Lower Monumental dam.

We observed that the calibration tool was trying to jack up the temperature response
slightly higher downstream temperatures (i.e.higher activity) to make up for lower densities bu
higher predation in Ice Harbor and McNary reaches. To do this, the calibration tool
producing an extremely steep temperature response function -- one with a predation 
much as 50 times higher at 15oC than at 10oC for a given predator density. For compariso
Vigg and Burley’s (1991) laboratory study found the predation rate to be approximately 
times higher at 15oC than at 10oC.

As a result, the late-season modeled survival rates were very low compared to the
Also, the model was decimating the smolt downstream in the Columbia where 
temperatures and densities are high.

αtailrace
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 Density Data Revised

In reaction to this problem of overly steep temperature response, we decided to lev
the predator densities -- either by averaging the densities for all reaches, all forebays 
tailraces, or by finding an average for each separately in the Snake, Columbia and E
regions.

The five predator density options we studied were:

• River-wide density averages (from 1990 data) for reach, forebay and tailrace.

• Separate density averages (from 1990 data) in the Snake, Mid-Columbia and belo
Bonneville.

• River-wide averages adjusted (after 1990) for the pikeminnow reduction program.

• Separate averages in the Snake, Mid-Columbia and below Bonneville; adjusted (a
1990) for the pikeminnow reduction program.

• Original densities adjusted (after 1990) for the pikeminnow reduction program.

When the averaged density options (first four) were used, the calibrated sum-of-sq
was in the range of 145 to 151. Also, the temperature response curves were of similar ste
to those found by Vigg and Burley (1991) (with ). It would be meaningless to com
our temperature response curve to Vigg and Burley’s directly, since our  is scaled b
activity coefficient as well as by the (relative) predator density in each reach, forebay
tailrace.

When the full original density data (fifth option) was used, the minimum sum-of-squ
was 174 and the temperature response curve wasunreasonablysteep (  much too large).

We opted for the 4th option as most reasonable: separate averages in the Snak
Columbia and below Bonneville; adjusted (after 1990) for the pikeminnow reduction prog
The predator densities in the data files (for spring chinook and steelhead) reflec
simplification. At this time, the predator densities for the fall chinook migration have not b
averaged in this way.

 III.3.3 - Results

Tables 45, 46 and 47 compare CRiSP.1 model yearly average survivals to NMFS 
average survivals in the research reach (for which NMFS estimates are given) and f
extended reach. It should be noted that:

• The model is calibrated to weekly or daily survival estimates, not to the yearly ave

• The NMFS survivalprojections are made by assuming that survival is equivalent in
each reach during that year. This is an extremely simplistic model. We do not calib
the model to those results and do not strive to reproduce those results.

• The 1997 and 1998 projections to BON are actually the product of the LGR-MCN 
MCN-BON survivals.

• The distribution of release numbers across a season can effect CRiSP.1 model
survivals. In most cases, we do not have actual release numbers and so have estim
release distribution across the season based on release distributions from the few
with known release distributions.

• At the time of this writing, we did not have NMFS survival estimates for the 1999
migrations and so the model was not calibrated to the estimates for those years. T

α 0.4=
Cmax

α
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results are given for comparison. 1998 fish releases were used with 1999 temper
flow and other river condition data to produce those results.

Figures 58, 59 and 60 show modeled verses observed (NMFS estimated) weekly su
for spring and fall chinook and steelhead over all years for which data exists.

For fall chinook in particular (Fig. 60), the model has difficulty explaining variations in 
data. Notice first that for the late season releases (after Julian day 230, August 18) the 
estimates tend to be particularly low. An explanation for this might include fish residualiz
Also, the 1997 survivals tended to be low. This may be partially explained by the fact that
was an extremely high flow year.

In fitting the predation parameters for the fall chinook, we found no temperature resp
Since CRiSP.1 ultimately models changes in migration and predation due to changes i
and temperature, the model has a particularly difficult time mimicking variations in the
chinook survival estimates.

Table  45 Spring chinook CRiSP.1 survivals and NMFS survivals for the research reach a
down to Bonneville for each year.

Year

Survival Through Research Reach Extrapolated Survival

Research
Reach

NMFS
Estimates

CRiSP.1
Survivals

Reach
NMFS

Projections
CRiSP.1
Survivals

1993 RES-LGO .75 .76 RES-BON .32 .41

1994 RES-LMO .64 .72 RES-BON .31 .38

1995 RES-MCN .66 .60 RES-BON .51 .40

LGR-MCN .67 LGR-BON .46

1996 LGR-MCN .65 .73 LGR-BON .47 .57

1997 LGR-MCN .65 .76 LGR-BON .48 .59

1998 LGR-MCN .77 .68 LGR-BON .63 .49

1999 LGR-BON .56 .54
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Fig. 58Spring chinook, modeled vs. observed survivals. The LGR - MCN
survivals for 1995 were singled out to highlight the poor behavior of (the late
season portion of) that data.

Table  46 Steelhead CRiSP.1 survivals and NMFS survivals for the research reach and do
to Bonneville for each year.

Year

Survival Through Research Reach Extrapolated Survival

Research
Reach

NMFS
Estimates

CRiSP.1
Survivals

Reach
NMFS

Projections
CRiSP.1
Survivals

1994 LGR-LMO .77 .77 LGR-BON .40 .35

1995 LGR-LMO .86 .80 LGR-BON .59 .42
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1996 LGR-MCN .69 .67 LGR-BON .52 .47

1997 LGR-MCN .73 .71 LGR-BON .47 .52

MCN-BON .65 .73

1998 LGR-MCN .65 .66 LGR-BON .50 .45

MCN-BON .77 .69

1999 LGR-BON .50 .44

Fig. 59Steelhead, modeled vs. observed survival.

Table  46 Steelhead CRiSP.1 survivals and NMFS survivals for the research reach and do
to Bonneville for each year.
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Table  47 Fall chinook CRiSP.1 survivals and NMFS survivals for the research reac
and down to Bonneville for each year.

Year

Survival Through Research Reach Extrapolated Survival

Research
Reach

NMFS
Estimates

CRiSP.1
Survivals

Reach
CRiSP.1
Survivals

1995 LGR-LMO .69 .66 LGR-BON .32

1996 LGR-LMO .67 .65 LGR-BON .33

1997 LGR-LMO .37 .63 LGR-BON .31

1998 LGR-LMO .73 .57 LGR-BON .29

Fig. 60Fall chinook, modeled vs. observed survivals. The late season releases
have been singled out as have the 1997 releases.
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 III.4 - Calibration of Fish Travel Time Algorithms

After the combined survival -- travel time calibrations are performed for (one stock) in 
species, the travel time parameters for the remaining stocks in each species are calibrat
predation rate parameters found in the combined runs for each species are used i
additional stock runs.

The migration rate equation (eq (51) on page 39) has the following coefficients:

• r(t) = migration rate (miles/day)

• t = Julian date

• β0 , β1 , βflow= migration rate regression coefficients

• Vf = average river velocity during the average migration period

• α = slope parameter

• TSEASN = inflection point of flow dependent term (in Julian date)

• TRLS= release date (in Julian date).

Other, models containing a subset of these parameters are also used when appropr
eq (53) and eq (54) on page 40).

 Travel Time Calibration Process

The procedure is to first organize fish into cohorts, which comprise fish released o
same day or on several consecutive days. Based on these cohorts, the following equ
minimized with respect to the migration rate parameters:

(134)

wheren is the total number of cohorts, andk is the total number of observation sites. Th
equation is fit using a conjugate gradient routine or a Levenberg-Marquardt routine (Pres
1992), with derivatives calculated numerically using a finite difference method (Gill, Mur
and Wright 1981).

In the following sections, the estimated migration rate parameters are provided, alon
plots that compare the model-predicted average travel times to observed average travel

 Estimating Vvar

Vvar determines the rate of spreading of the cohort of fish and requires more de
information to estimate than the migration rate parameters, which just require average
time information. EstimatingVvar requires the distribution of travel times for a cohort; thus t
unit of information for calibration is the daily counts. Since there is a great deal of variabil
the variances associated with the daily counts, generalized least squares (Draper and
1981) is used to estimateVvar. Zabel (1994) provide the details of this procedure.

SS ttmod ttobs–( )2

j 1=

k

∑
i 1=

n

∑=
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 Smolt Start/Stop Date

The smolt dates determine when fish initiate migration. Before smolt start date
migration occurs. After smolt start date and before smolt stop date, a proportion of the r
initiate migration on a daily basis. After smolt stop date, all fish in the release have init
migration. Note that these dates are only relevant if fish are released before they are re
migrate. If the fish are active migrants, then smolt start and stop dates should be set to
previous to release dates.

In order to estimate these dates, we require data of fish released before they are r
migrate. Based on the arrival distribution at the first observation point and the travel tim
reach that point, smolt start and stop dates can be estimated.

 Travel Time Data

Several criteria are used to select appropriate data sets. First, because migration
related to date in season and date of release, it is essential that the calibration data sets h
released over long periods of time so these effects can be measured. Also, it is desirable
fish released from the same site over multiple years so that a variety of river condition
encountered. Sufficient numbers of fish must be observed at downstream observation sit
fish must be observed at multiple sites. Finally, data sets are selected to represent as man
of fish and sections of the river as possible.

 Variance in Migration Rate

Variability in plots of observed versus modeled average travel times result from varia
among particular releases. To account for this a multiplicative variance is introduced by e
on page 41 where

• r = determined

• V(i) = variance factor that variesbetween releases only.

V(i) is drawn from the broken-stick distribution. The default values for spring and fall chin
and steelhead are mean = 1 low = 0.7 and high = 1.3.

 III.4.1 - Results
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IV. Testing the Model with Data

 IV.1 - Overview

 IV.2 - FGE Validation

 IV.3 - Travel Time Validation

 IV.4 - Survival Validations
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V. Sensitivity Analysis

 V.1 - Description

 V.2 - Results

 V.3 - Summary
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