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Executive Summary
This report is a post-season analysis of the performance of the CRiSP portion of the Real-

Time/CRiSP complex. Observed 1999 data are compared to predictions made by CRiSP/Real-

Time during the 1999 outmigration for arrival timing, water temperature, total dissolved gas,

flow, and spill at various dams.

CRiSP model runs consistently demonstrate that basic mechanisms of migration can be

applied to Columbia River fish movements and their survival tracked downstream. As a part of

RealTime/CRiSP, CRiSP is absolutely dependent on the arrival distributions predicted by the

RealTime portion of the model. Arrival distributions were skewed by detection problems at

Lower Granite Dam and small run sizes for some stocks (notably Catherine Creek for which only

a subset of the PIT-tagged ESU fish were used). This leads to skewed distributions which are

propagated downstream through CRiSP.

Current prediction methodology may have reached an accuracy limit and therefore CRiSP’s

predictive powers are maximized as well. RealTime and CRiSP researchers are developing strate-

gies for the 2000 migration season that will minimize the errors inherent in the transfer of infor-

mation from one model to the other.
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1 Introduction

Since 1988, wild salmon have been PIT-tagged through monitoring and research progr

conducted by the Columbia River fisheries agencies and Tribes. The detection of tagged in

als at Lower Granite Dam provides a measure of the temporal and spatial distribution of th

salmonids populations. Program RealTime was developed by researchers at the University

Washington to take advantage of this historical data to predict the proportion of a particular

lation that had arrived at the index site in real-time and to forecast elapsed time to some fu

percentile in a migration (Townsend et al. 1996, 1997 and Burgess et al. 1999). The Colum

River Salmon Passage (CRiSP) model predicts downstream migration and survival of indiv

stocks of wild and hatchery spawned juvenile fish from the tributaries and dams of the Colu

and Snake rivers to the estuary. The model describes in detail fish movement, survival, an

effects of various river operations on these factors. Fish travel time in CRiSP has been cali

using the PIT tag data.

For the 1996 migration season, Columbia Basin Research launched a prototype run tim

system, CRiSP/RealTime, with results updated on the World Wide Web. This project was

launched in an effort to provide real-time inseason projections of juvenile salmon migration

managers of the Columbia-Snake River hydrosystem to assist the managers in decisions a

mitigation efforts such as flow augmentation, spill scheduling and fish transportation. CRiS

RealTime utilizes two separate programs to generate downstream passage distributions. T

gram RealTime uses an empirical pattern matching routine to predict the arrival distributions

wide variety of wild salmon stocks at the first detection point in the migratory route, Lower G

ite Dam. The CRiSP model takes the predictions from RealTime and uses hydrological, fis

behavioral and dam geometry information to simulate the movement and survival of juveni

salmonids through Little Goose, Lower Monumental, and Ice Harbor dams on the Snake R

and McNary Dam on the Columbia River. At the same time, CRiSP produces estimates of 

fraction of the run arriving at Lower Granite dam which was subsequently transported at the

Snake River transport projects (Lower Granite, Little Goose, and Lower Monumental dams

This report is a postseason analysis of the accuracy of the 1999 predictions from the C

model as part of the CRiSP/RealTime complex. In the CRiSP model, water quality affects f
1
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migration and survival, temperature, and dissolved gas levels which are modeled from flow

spill forecasts, historical data, and year-to-date data. The effectiveness of these modeling e

are compared to observations of passage and river conditions at the end of the season. Th

ses and graphic presentations herein demonstrate changes in accuracy of the models thro

the season.
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Figure 1 Simplified schematic of RealTime and CRiSP complex. Prior to migration year
2000, model generated gas was not updated with observed values for the prod
tion of daily passage distribution forecasts. PIT Tag data courtesy of Pacific
States Marine Fisheries Commission. Water Quality Data courtesy U.S. Army
Corps of Engineers. Flow Forecast File provided by Bonneville Power Adminis
tration and U.S. Army Corps of Engineers.
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2 Methods

2.1 Data

2.1.1 Travel Time Data

The fish analyzed in this report are spring/summer chinook which originate from severa

utaries of the Snake River: Catherine Creek, Imnaha River, Minam River, South Fork Salm

River abbreviated as CATHEC, IMNAHR, MINAMR, and SALRSF, respectively. Previous p

season analyses also included Lostine River (1997) and South Fork Wenaha River (1996, 

stocks. The fish were tagged in their natal streams with passive integrated transponder (PIT

PIT-tagging of wild salmon is part of on-going monitoring and research programs conducte

the Columbia River fisheries agencies and Tribes. Information from PIT tag studies and oth

monitoring programs is presented in reports by the Fish Passage Center, National Marine 

ies Service (Achord et al. 1992, 1994, 1995a, 1995b, 1996, 1997), Idaho Department of Fis

Game (Kiefer et al. 1993, 1994), Oregon Department of Fish and Game (Keefe et al. 1994

Walters et al. 1997) and the Nez Perce Tribe (Ashe et al. 1995). PIT tags provide instantan

passage times for individual fish at interrogation sites (Prentice et al. 1990). The four obser

sites addressed in this report are Lower Granite, Little Goose and Lower Monumental Dam

the Snake River and McNary Dam on the Columbia River.

In addition to the individual stocks, a “composite” stock was formed by combining all fou

stocks together, weighting each stock equally, following guidance from NMFS.

For the CRiSP downstream projections, we are limited to using historical data since 199

order to estimate fish travel time parameters and confidence intervals. Although fish were P

tagged previous to these years, there was no provision made to return detected PIT-tagged

the river. Consequently, the majority of fish observed at Lower Granite Dam were removed

the river by transport operations. Too few fish were subsequently observed at downstream 

gation sites to generate passage distributions and travel time estimates. In 1993, slide gate

installed which selectively diverted PIT-tagged fish back into the river, allowing for adequat

sample sizes at the downstream interrogation sites.
3
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2.1.2 Flow, Spill and Other System Operation Data

Any forecast of fish movement relies critically on accurate forecasts of flow, spill, transp

tion, and other key system operations. The U.S. Army Corps of Engineers generates flow, 

and reservoir surface elevation forecasts at all projects on the Columbia and Snake Rivers

there is fish passage. Water supply forecasts are based on a number of factors: the Nation

Weather Service’s Northwest River Forecast Center predictions, flood control requirements

the Army Corps, electrical power demand forecasts, and other criteria. The substantial unce

associated with springtime conditions often results in frequent and marked changes in thes

casts during April and May. Moreover, attempts to reduce the biological impacts of dissolve

generated from high spill levels also results in a shifting of spill between projects within as w

outside the basin. Although the forecasts covered as much as 120 days into the future, it m

recognized that their principal use was in deciding operations for the next week. Forecast a

racy beyond even a few days was itself uncertain. Bonneville Power Administration process

Army Corps forecasts and made them available to CBR staff at regular intervals; and subs

fish arrival predictions were made using the most recent available flow/spill/elevation forec

As a result, forecasts of fish arrival times and river conditions vary between predictions, and

casts may be based on the latest available data rather than the previous forecast.

2.1.3 Temperature Data

The temperature time series used in the CRiSP analysis is a combination of year-to-da

perature data and forecasted temperatures. The forecasts were based on historical tempera

flow information and the 1999 flow forecasts. The historical data includes flow and tempera

profiles from Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) reservoirs 

the years 1976 through 1999. Historic and observed year-to-date data was obtained from t

Columbia River DART database, which downloads water quality data from the Army Corps

the majority of monitoring sites in the Columbia Basin. Water quality data for Priest Rapids

downloaded to DART from Grant County PUD manually until mid-May when the process w

automated. Temperature predictions are made by applying a three-day moving window to 

dicted temperature time series to historical average patterns of temperature change. This m

is described in detail in section 3.2.
4
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2.1.4 Total Dissolved Gas Data

Total dissolved gas (TDG) data are collected at Army Corps fixed monitoring sites below

Columbia and Snake river dams. TDG data are downloaded directly from the Army Corps o

daily basis and quality assurance is not always guaranteed. Anomalies in observed TDG d

indicators of suspicious data. These data are later corrected by the Army Corps. Corrected

used whenever possible and may alter hindcasts. The current Army Corps water quality da

be consulted for reference. Army Corps also posts a status report for each monitor, includi

information on which monitors are not reporting data.

TDG forecasts in particular are sensitive to predicted flows and planned spill. For histori

dictions, the accuracy of the gas predictions will depend on the quality of the historic spill d

input. Data QA/QC is an ongoing process. With the correct spill data, TDG predictions are 

cally within 5% of the observed gas levels.

The modeled gas production predicts the gas observed at the Army Corps fixed monito

a map of the dissolved gas monitoring system, see the Water Management Division, U.S. A

Corps of Engineers web document, http://www.nwd-wc.usace.army.mil/report/pdf/gasmap.p

should also be noted that the nearest downstream monitors to Bonneville Dam are 6 miles

stream, so it is expected that the gas levels at these monitors (WRNO and SKAW) will be l

than those generated at the dam.

Table 1 U.S Army Corps of Engineers total dissolved gas fixed monitoring sites
used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station
Code

Location
facing downstream

Chief Joseph Tailwater CHQW Right Bank

Wells Tailwater WELW

Rocky Reach Tailwater RRDW Mid Channel

Rock Island Tailwater RIGW Left Bank

Wanapum Tailwater WANW Mid Channel

Priest Rapids Tailwater PRXW Mid Channel
5
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2.1.5 Archives of Model Predictions

Each time the RealTime and CRiSP models are run, results are archived for future refe

Graphs and text reports based on these same archives are available through a variety of q

tools on the World Wide Web. The home page for this project and other Columbia Basin

Research products can be found at http://www.cbr.washington.edu. Runs are made severa

per week and the outcome recorded. Archives include daily passage distribution forecasts 

of the five dams for each stock of interest and water quality predictions for selected dams o

Columbia and Snake rivers.

2.2 Models

2.2.1 CRiSP

CRiSP is a mechanistic model that describes the movement and survival of juvenile salm

the Columbia and Snake Rivers. The theory, calibration, and validation of the model is des

in detail in Anderson et al. (1996). We include only a brief summary of the model here, but 

note that it has been extremely successful in fitting all of the yearling chinook survival data

lected in the Columbia Basin, from 1966 through the present day.

Dworshak Tailwater DWQI Left Bank

Lower Granite Tailwater LGNW Right Bank

Little Goose Tailwater LGSW Right Bank

Lower Monumental Tailwater LMNW Left Bank

Ice Harbor Tailwater IDSW Right Bank

McNary Tailwater MCPW Right Bank

John Day Tailwater JHAW Right Bank

The Dalles Tailwater TDDO Left Bank

Bonneville Tailwater WRNO
SKAW

Left Bank
Right Bank

Table 1 U.S Army Corps of Engineers total dissolved gas fixed monitoring sites
used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station
Code

Location
facing downstream
6
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Modeled factors that affect survival of hatchery and wild juvenile stocks include daily flo

river temperature, predator activity and density, total dissolved gas (TDG) supersaturation,

river operations such as spill, fish transportation and bypass systems. For CRiSP model run

and spill were provided by BPA, and temperature and TDG forecasts were developed base

those flow and spill estimates and year-to-date observed data. All other relevant paramete

determined at CBR, based on a variety of different sources.

Dam passage changes with fish guidance efficiency, passage mortalities, and diel pass

behavior. These factors are modeled on a species and dam-specific basis. Relevant mode

eters for inseason modeling of yearling chinook stocks are given in Appendix B. These par

ters are generally drawn from the literature or are calibrated from related data (e.g. PIT tag

detection rates at various projects). Reservoir mortality depends on several factors: fish tra

time, predator density and activity, total dissolved gas supersaturation levels, and water tem

ture. Predator densities used in CRiSP were estimated from several published sources (Pa

al. 1994, Ward et al. 1995, Zimmerman et al. 1997). Total dissolved gas production equatio

based on research conducted by the Waterways Experiment Station (WES), U.S. Army Co

Engineers on eight Columbia Basin dams and fitted to other dams in the Columbia Basin s

by CBR (U.S. Army Corps of Engineers 1996, 1997).

2.2.2 Travel Time Components

The main factors determining predicted arrival distributions of fish at the downstream da

migration travel time and reach mortality. The river is divided into a series of reaches, and 

move through the reaches sequentially. In each reach, the travel time distribution is determi

the migration rate (rt) and the rate of spreading (VVAR) (Zabel and Anderson 1997).

Migration rate varies by reach and by time step and is stock specific. The CRiSP migra

rate equation takes into account fish behavior related to river velocity, seasonal effects, an

experience in the river (Zabel et al. 1998). For the yearling chinook analyzed here, we did n

detect any seasonal behavior, so a reduced equation is used:

, (1)r t β0 β1
1

1 exp α2 t TRLS–( )–( )+
---------------------------------------------------------- βFLOW Vt⋅+ +=
7
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where:
 = the time-dependent migration rate;

t = the Julian Date;

 = the Julian Date of passage at Lower Granite;

 and  = flow-independent parameters;

α2 = a slope parameter for the flow-independent term;

 = parameter that determines the proportion of river velocity used for migratio

and

 = the average river velocity during the average migration period, determined for e

reach.

The flow-independent part of the equation starts fish at a minimal migration rate (βMIN) with fish

increasing their flow-independent migration rate to a maximal migration rate (βMAX). These rates

are determined as follows:

(2)

. (3)

The parameterα2 determines the rate of change fromβMIN to βMAX. For each stock, the rate of

spreading parameter (VVAR) is estimated, along with the three migration rate parameters from

above equations:βMIN, βMAX, andβFLOW. Parameters used during the 1999 migration season 

be found in Appendix B.

2.2.3 Parameter Estimation

Migration rate parameters and the spread parameter (VVAR) were estimated from the historica

data using an optimization routine that compares model predicted passage distributions to

observed ones. The first step is to use the passage distribution at Lower Granite as a relea

bution in the CRiSP model. Based on an initial set of parameters, arrival distributions are g

ated at the downstream observation sites. The model predictions are compared to the

observations, and then the optimization routine selects a new set of parameters to try. This

dure iterates until the parameters are selected that minimize the difference between the ob

r t

TRLS

β0 β1

βFLOW

Vt

βMIN β0 β1 2⁄+=

βMAX β0 β1+=
8
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The modeled mean travel times are a function of the migration submodel chosen and th

ticular parameter values selected. The migration rate parameters were estimated by a least

minimization (with respect to the parameters) of the following equation:

, (4)

where:
O = the total number of observation sites,

C = the total number of cohorts,

 = the modeled mean travel time to thei-th site by thek-th cohort, and

 = the observed mean travel time to the i-th site by thek-th cohort.

2.2.4 Confidence Interval Calculation

The 95 percent confidence intervals provide an estimate of the reliability of the current y

predictions, and reflect the accuracy of previous years’ predictions.

The confidence intervals were constructed using a jackknifing method. That is, for each 

years of historical data (1993 to the present), predictions were generated using the remain

years of historical data (with the one year omitted). The performance of these jackknifed hi

cal predictions yield confidence intervals on a daily basis.

First, some definitions, which apply to a particular stock at a particular site:

 = the cumulative passage distribution to timet for thei-th year (i = 1,2,...,n).

 = the model predicted cumulative passage distribution. This distribution is base
jackknifed data.

t = the number of days since the first fish arrived at the observation site for a particu
year.

We want to compute the variance in predicted percent passage for eacht. The first step is to

compute the sample variance for each t:

SS Ti k,
ˆ Ti k,–( )

2

k 1=

C

∑
i 1=

O

∑=

Ti k,
ˆ

Ti k,

Fit

F̂ i t,
9
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with n = the number of years of historical data. The factor of 100 is included to convert the C

(with range 0 to 1) to percentages (with ranges 0 to 100).

Finally, the 95 percent confidence interval for a particular t is computed as

. (6)

See Table B-4 for the jackknifed migration rate parameters used during the 1999 migra

season to generate the 95 percent confidence intervals. We do not produce confidence inte

Ice Harbor Dam since there are no PIT Tag detectors installed at that dam.

2.2.5 Assessment of Predictions

To assess the performance of the passage and other predictions, we apply the same m

used to assess RealTime predictions (Townsend et al. 1996). For each stock at each obse

site, we compute the Mean Absolute Deviation (MAD) for the day (j) on which the prediction was

made. This measure is based on the average deviation between predicted and observed cu

passage on prediction dates during the season. MAD is computed as:

(7)

where:
j = forecast day on which MAD is calculated;

t = index of prediction day (from 1 toN);

N = number of days on which a prediction and observation were made for the stock 
site during the season;

Day = vector of length N which identifies the Julian days from first observation of the
stock at the site until two weeks past last observation (this is fixed for each sit
each stock);

 = observed cumulative passage onDayt; and

 = predicted cumulative passage onDayt.

St
2 1

n 1–
------------ Fit F̂ i t,–( ) 100×( )2

i 1=

n

∑=

100 F̂ i t, St
2 t0.05 2( ) n 1–,⋅±⋅

MADj
1
N
---- FDayt

F̂Daytj
– 100×

t 1=

N

∑=

FDayt

F̂Daytj
10



A

n the

sh

 MADs

dic-

shot of

lly,

. The

emper-

the flow

trend in

 and

e

e)

de.

wer

d pas-

and

 3 days

er the

 a safe-

ting

ature
For each stock/site combination, the season length is determined as the time from whe

first fish for the particular stock is observed at the site until two weeks after the last fish is

observed at the site. This arbitrary “tail” of the distribution accounts for the possibility that fi

may subsequently pass without being detected; the same two-week tail is used to generate

for RealTime.

The summation in Equation (7) is performed over each of the dates on which model pre

tions were implemented – approximately every day during the season. This provides a snap

how well the model performs as the season progresses based on the final, “true” data. Idea

there would be general decrease in MAD asj goes from 1 toN because the true distribution of the

run should be better known and the true state of the flow and spill profiles should be known

last MAD value (MADN) is used in Table 6 as the final analysis of model success.

2.2.6 Temperature Algorithm

A temperature forecasting algorithm was developed to predict the current year's water t

atures on the Snake and Columbia Rivers based on historical data, year-to-date data, and 

forecast file. The forecasted river temperatures in the near future are based on the current 

temperature; however, far into the future, the algorithm relies on mean temperature profiles

adjusts this mean according to the amount of flow. Mean temperature and flow profiles wer

computed for Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) using data

from 1976 to the present. We queried the Columbia River DART (Data Access in Real Tim

database for current year-to-date temperature and flow data each time a prediction was ma

CRiSP used the temperature profiles as representative of the Snake, Mid-Columbia and Lo

Columbia temperatures, respectively, for the generation of total dissolved gas forecasts an

sage distribution forecasts.

The forecast algorithm begins by setting the daily temperature to the mean for that day 

then replacing the mean temperatures where year-to-date information is available. The last

of available temperatures are looked at to predict the next day's temperature. Averaging ov

last three days is an attempt to smooth out some of the day to day variation and to provide

guard against bad data giving the algorithm a faulty starting point. Given the averaged star

point, the next 4 weeks of temperatures are calculated by taking the previous day's temper
11



A

ly

f the

re-

onth

low-

ical

just-

d

art of

vel-

 the
and adding to it the average daily temperature increment for that day.

Over time, the current trend of temperature becomes less and less useful and eventual

uncorrelated with future temperatures. Thus after four weeks, this predictor is phased out o

calculation. This is when the flow forecast information enters into the algorithm. The flow fo

cast together with the mean profiles of flow and temperature predict what temperatures a m

or more from reliable data will be. The relationship between flow and temperature is the fol

ing:

(8)

where:
T = temperature prediction value for dayi,

tempmean = mean temperature on dayi from mean temperature profile,

B0 andB1 = flow coefficients,

F = observed flow value, unless no value, then flow value from flow forecast file,

flowmean = mean flow on dayi from mean flow profile.

Temperature was measured in Celsius and flow in kcfs. Because there is reliable histor

temperature data typically only from April to September, these regressions and the flow ad

ments were only done within this time interval. For the remainder of the year, the unadjuste

mean temperature profiles are used.

2.2.7 Total Dissolved Gas Modeling

For CRiSP, new equations have been implemented for gas production from spill. As a p

the Gas Abatement study at the Army Corps, the Waterways Experiment Station (WES) de

oped these new equations as an improvement over GASSPILL, which had previously been

predominant model for gas production.

Table 2 Values used for flow coefficientsB0 and B1 during the 1999
migration season.

Lower Granite Priest Rapids The Dalles

B0 0.0128 -0.0135 0.0678

B1 -0.0212 -0.0117 -0.0058

Ti tempmeani B0 B1 Fi flowmeani–( )⋅+ +=
12
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The new equations are an empirical fit of spill data and monitoring data collected by the 

Corps. The percent of total dissolved gas (TDG) exiting the tailrace of a dam is predicted a

function of the amount of discharge in kcfs. This level of TDG is not necessarily the highest

of gas reached, but rather the level of gas in the spill water after some of the more turbulen

cesses have stabilized. The calibration for each dam was fit to the nearest downstream mo

which is typically about a mile downstream of the dam.

For the eight lower Snake and lower Columbia dams that were studied by WES, the ga

duction equation may take one of three forms: linear function of total spill, a bounded expon

function of total spill, or a bounded exponential function of the spill on a per spillbay basis. T

equations were adopted for all dams in CRiSP.

Linear Saturation Equation

(9)

where:
%TDG = the % total dissolved gas saturation, where 100% is equilibrium,

Qs = the total amount of spill inkcfs, and

m, b = the empirically fit slope and intercept parameters.

Bounded Exponential Equations

(10)

OR

(11)

where:
%TDG = the % total dissolved gas saturation, where 100% is equilibrium,

Qs = the total amount of spill inkcfs,

qs = the amount of spill through an individual spillbay, and

a,b,c = the empirically fit model parameters.

CRiSP is currently configured so that a separate spill pattern, and thus a separate gas 

tion function, for night and for day can be set for each dam. (A spill pattern specifies which

%TDG m Qs⋅ b+=

%TDG = a + b expc Qs⋅( )⋅

%TDG = a + b expc qs⋅( )⋅
13
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bays are used to discharge flow both in number and position.) Once the number of spill ga n,

for a particular pattern is set, Equation (11) is then converted into Equation (10) by the relaqs

= Qs/n. This conversion formula assumes that the amount of spill is uniformly distributed am

the open spill gates. The model parameters for the day and night gas production thus can 

ferent for a given dam, reflecting a change in the position or number of gates and hence in

dynamics of gas production.

2.2.8 Assessment of Temperature and TDG Predictions

Similar to the passage prediction assessment, for each observation site we computed M

between predicted temperature or TDG values and the observed values. Hindcasts may ch

throughout the prediction period as observations were corrected and updated information w

used.

3 Results

The joint effort of RealTime and CRiSP produced many inseason forecasts products, in

ing:

• Daily Fish Passage

• Passage and Transport Summary

• Smolt Passage Predictions w/Historical Timing Plots

• Total Dissolved Gas (TDG) Forecasts

• Temperature Forecasts.

These products are presented graphically via the World Wide Web. To locate them, navigat

web browser to “Inseason Forecasts” from http://www.cbr.washington.edu/. In this report,

selected CRiSP/Realtime predictions are analyzed and graphic presentation of these result

in the various appendices.

3.1 Flow and Spill Forecasts

Forecasts of flow and spill were made available approximately every two weeks during 

season. Forecasted flows and spills for March 25, May 10, and July 6 at LWG, PRD, TDA,

BON are shown in Appendix E.
14
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Early forecasts of daily-averaged flow over the entire season at LWG were not accurate

reflects the uncertainty associated with weather conditions, snow melt, and runoff from the 

River basin.

Considerable high-flow conditions occurred at the end of May and well into June, but ne

reached the high peaks of 1998 (over 200 kcfs). The flow forecasts can not anticipate spike

flow (Figure E-1) and corresponding spill that generally has to occur but potentially did a be

job of predicting the flows than last year because the magnitude of the late spring peak wa

reduced.

Spill forecasts at PRD considerably underestimated the actual spill for most of the summ

This is exactly what happened last year as well. The trend for the last three years is in Appe

Flow and spill forecasts affect fish passage, total dissolved gas, and temperature. Errors in

forecasts have to be propagated through the model and affect model results.

3.2 Temperature Prediction

The temperature prediction algorithm begins by setting the daily temperature to the hist

mean value for that day and then replacing the mean temperatures where year-to-date info

is available. Given an averaged starting point from the previous few days of current data, th

four weeks of temperatures are calculated by taking the previous day's temperature and ad

it the historically averaged daily temperature increment for that day. Over the forecast perio

current trend of temperature becomes less and less useful and eventually uncorrelated with

temperatures. Thus for the long term forecaster, (over four weeks) this predictor is phased

the calculation. This is when a simple linear regression against predicted flow is used to pr

temperatures a month or more away from reliable data.

A general trend of negative correlation between flow and water temperature can be see

data from the Snake and Columbia Rivers. By looking at yearly averages of water tempera

and flow, one can see that years with higher than average flows have lower than average w

temperatures, and similarly years with lower than average flow have higher than average w

temperatures. Using a flow forecast file for the current year, a prediction of temperature ca

made using the flow/temperature relationship (see 2.2.6 for details). It should be noted tha
15
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temperature data are very noisy and are influenced by several variables: air temperature an

weather conditions, water volume and reservoir geometry, snowpack, upstream water rele

etc. Consequently, the flow/temperature relationship only explains a small amount of the va

tion of water temperature within a year and between years. As a result, averaged historical

plays a large part in the predictions made, with the flow/temperature relationship only pred

a small amount of variation about the mean.

The algorithm developed for temperature has many desirable features. It concurs with t

most up-to-date data, it is consistent with historical seasonal patterns in temperature, and i

predicted flows to make moderate adjustments. Temperature predictions were generated a

every two weeks during the migration season, coinciding with the generation of a new flow

cast file.

Sample predictions versus the 1999 observed temperatures for each of three reservoirs

shown in Appendix G. For all three reservoirs, the predictions became more accurate as th

son went on and more observed data for 1999 became available. Initially, the forecasts loo

smooth, anticipating a change in temperature that roughly corresponded to the natural ann

cycles of flow and air temperatures. However, there was a great deal of variability in the obs

temperatures that the forecaster could not anticipate.

Appendix H shows, for each of the three dams, a time series of how accurate the predic

were on each day. In each of the plots, MAD is plotted for the forecast made on that day co

pared to the data (see '2.2.5 Assessment of Predictions'). For example, the prediction mad

Julian day 131 (May 10) at The Dalles was off by an average .56 degrees for the entire sea

whereas the observation made one month later on Julian day 162 was off by an average .4

degrees for the entire season. The trend for the season at each of the dams is a steady im

ment in the forecast compared to the data.

In general, short-term predictions (i.e. for the next week) were no better than long-term 

dictions (for the next several weeks); this is a consequence of lack of quality assurance for

to-date temperature data. Note that some of the “observed” temperature tracks shown in Ap

G are suspiciously noisy. Since predicted temperatures take as their starting point the mos

“observed” temperatures, any inaccuracy in recent temperature records will be reflected in
16
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short-term predictions of temperature. CRiSP, while sensitive to temperature variation, doe

produce strongly different results for differences of only one or two Celsius degrees, so the

inaccuracies are unlikely to have contributed significantly to any model error.

By comparison with 1998, temperature predictions were significantly better.

3.3 Total Dissolved Gas Prediction

Total Dissolved Gas forecasts were made each time a new flow forecast file was made

able to CBR. Sample predictions versus the 1999 observed total dissolved gas data for five

toring sites are shown in Appendix I. For all monitoring sites, the predictions became more

accurate as the season went on and more observed data for 1999 became available. This 

by the plots in Appendix J that are analogous to the prediction success plots shown for tem

ture. The forecasts used observed dissolved gas data, predicted spill at upstream dam(s), 

perature profile output from the temperature algorithm to anticipate dissolved gas concentra

It failed to predict the spikes in dissolved gas as a result of unanticipated spill. There are so

curious results for mid-Snake River monitoring sites, but the scale that the plots are made 

drawn to maximize the differences within the plot. In fact, the Lower Monumental tailwater

(LMNW) gas predictions (Figure J-1) are quite stable.

3.4 Passage Distribution Prediction

Table 4 presents the number of PIT-tagged fish from each stock observed at each of the

vation sites. For all stocks, fewer than half of the number of fish observed at Lower Granite

observed at McNary. The South Fork Salmon River stock has low observation numbers at a

sites.

Plots of predicted passage distributions compared to the observations of PIT-tagged fis

provided in Appendix C. The entire passage distribution predictions are presented for three

sentative dates: May 11, June 2 and July 6 to span the early, middle and late portions of th

Previous to the date of prediction (vertical line) the model predictions are based on hindcas

sage for the best available river conditions. Ahead of the prediction date is the forecast pas

based on anticipated river conditions (discussed in other sections: see 3.1, 3.2, 3.3). The th

tical bar represents the uncertainty of the forecast for that day based on historical condition
17
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Complete plots showing the current forecast with historic conditions are available on our we

at http://www.cbr.washington.edu/. Navigate to “Inseason Forecasts” to view passage plots

In the plots in Appendix C, the predictions at Lower Granite Dam are based on RealTim

results, and the predictions at the downstream sites are CRiSP projections. Any error in the

diction at Lower Granite Dam is propagated to the downstream sites. This is a particular pr

this year since the counts at Little Goose exceed those at Lower Granite for all stocks. The

Table 3 Final number of PIT-tagged fish observed at selected observation sites

Stock

Number of wild spring and summer chinook with PIT tags observed at

Lower
Granite

Little
Goose

Lower
Monument

McNary
John
Day

Bonneville

Catherine Creek 147 262 238 102 98 70

Imnaha River 40 84 70 42 30 17

Minam River 47 107 99 58 33 28

S. Fork Salmon
River

58 61 58 23 29 15

Composite 272 514 465 225 190 130

Table 4 Final number of PIT-tagged fish used for RealTime and CRiSP modeling at
selected observation sites.

Stock

Number of wild spring and summer chinook with usable PIT tags
observed at:

Lower
Granite

Little
Goose

Lower
Monument

McNary
John
Day

Bonneville

Catherine Creek 20 38 34 15 17 12

Imnaha River 40 84 70 42 30 17

Minam River 47 107 99 58 33 28

S. Fork Salmon
River

38 61 58 23 29 15

Composite 145 290 291 138 109 72
18
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or and
lems with the forecast are partially due to this inconsistency. Failure to detect, or report all 

tagged fish passing the detectors at Lower Granite Dam means that their continued downs

movement cannot be modeled accurately.

4 Discussion

4.1 Accuracy of Predictions

4.1.1 Temperature Prediction

The temperature forecasting algorithm was successful in creating an appropriate tempe

profile for each of the reservoirs. At Lower Granite, the prediction accuracy (as measured b

MAD) steadily improved.

By looking at the difference between the observed and predicted data points before the

casting line, one can see that some of the outlying temperatures were in fact later corrected

Army Corps and Grant County PUD. Any differences between the predictions and the obse

data before the forecasting line reflect the changes in the data after it was collected when q

control was applied to the data (e.g. Figure G-2 upper panel).

Because yearling chinook migrate in the spring and early summer, they are not particul

vulnerable to temperature extremes. In CRiSP, although predation and gas saturation dyna

are somewhat temperature-dependent, the difference in estimated survival resulting from t

ature variations of one or two degrees are minimal. The overwhelming majority of tempera

predictions fell well within the two-degree window, and thus we do not believe that inaccura

in temperature forecasts contributed significantly to errors in projections of fish passage.

4.1.2 Flow/Spill Predictions

Flow and spill forecasts provided by Army Corps improved in accuracy as the season p

gressed; however, the accuracy of late season predictions made in late March was not ver

due to the unanticipated spike in flow and spill. Early season forecasts are notoriously poo

Appendix F for comparison of late-March predictions in 1997, 1998, and 1999 to observed 

although some are clearly more realistic than others (compare 1999 predictions at Ice Harb

Priest Rapids).
19
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Estimates of the fraction of fish transported at Snake River projects will be sensitive to e

mated spill fractions: fish that are spilled are not collected for transportation. For accurate l

term projections of transport fractions, more accurate long-term projections of spill fraction 

be required. Even when spill fraction is accurately measured, variability in spill efficiency an

FGE can produce errors in estimated transport fractions.

The apparent lack of any prediction of spill for Priest Rapids throughout the season is s

for other Columbia dams above the confluence with the Snake. Very low or no spill is repor

the flow archives for these dams this year.

4.1.3 Total Dissolved Gas Predictions

The MAD results for total dissolved gas (TDG) predictions are shown in Appendix J. Th

trend toward improvements in MAD are obvious as the season progresses. The larger valu

the beginning of the season are a result of the unanticipated spikes in the systemwide flow

corresponding spill especially in the Snake River system. Notice the very low levels after th

point (approximately Julian 150). The final MAD values are at or below two for each of the d

4.1.4 Passage Timing Predictions

The MAD results for RealTime and the downstream predictions are presented in Table

the end of the season. The RealTime MAD is calculated from RealTime output files at the e

the season. The reported 1999 “run” and “prediction” percentages are used according to th

method in Equation (7). The downstream MAD values are based on CRiSP output files for 

tagged fish.

Table 5 Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 1999. MAD at Lower Granite is from
RealTime the other three are from archived CRiSP run results.

Stock
RealTime
MAD at

L. Granite

Downstream MAD

L. Goose Low Mon. McNary

Catherine Creek 6.2413 8.79 8.72 13.19

Imnaha River 3.40402 9.31 11.37 12.84

Minam River 5.89064 6.38 5.37 5.92
20
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Generally, the composite stock is easier to predict than individual stocks. This is to be

expected as the composite stock represents a substantially larger number of fish. A decrea

performance at downstream dams such as the MAD of 14.74 for South Fork Salmon River

at McNary may be due to the loss of fish as they move downstream. There are differences

between stocks in how well CRiSP/RealTime performed. Some examples of these are sho

more detail in graphs in Appendix C on a stock-by-stock basis.

Seasonal variation in MAD values is plotted for select sites and stocks in Appendix D. I

readily apparent that upstream prediction errors are “propagated” downstream. Note how t

terns of MAD (though not necessarily the values) move in step through the season. Compa

with 1998 values can be done with direct comparison toTable 6

S. Fork Salmon River 5.8343 5.62 2.58 14.74

Composite 2.5431 11.6 11.35 8.16

Table 6 Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 1998. MAD at Lower Granite is from
RealTime (Burgess 1999) the other three are from archived CRiSP run results.

Stock
RealTime
MAD at

L. Granite

Downstream MAD

L. Goose Low Mon. McNary

Catherine Creek 8.38 3.12 3.87 3.70

Imnaha River 10.61 4.15 2.37 6.29

Minam River 7.77 6.49 4.88 12.7

S. Fork Salmon River 4.26 3.37 4.73 6.80

composite 2.57 3.82 1.35 1.31

Table 5 Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 1999. MAD at Lower Granite is from
RealTime the other three are from archived CRiSP run results.

Stock
RealTime
MAD at

L. Granite

Downstream MAD

L. Goose Low Mon. McNary
21
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There are several fundamental issues that contribute to high MAD values.

1) CRiSP releases fish at Lower Granite Dam and the migration parameters for these fi

such that they do not begin to swim at their fastest speed until some time later in their migr

If the fish were released (in the model) in their natal streams they would likely be migrating

close to their top speed as they pass Lower Granite Dam and maintain this speed as they 

downstream from there. The fact that the fish move slowly at first is an artifact of the gener

ting procedure used to calibrate travel times between actual release points and downstream

tions. The actively migrating fish need to have migration parameters that reflect the fact tha

have been migrating for many days already. This is illustrated in Figure 1. The top graph sh

the prediction based on the calibrated travel time parameters for the Composite stock. The

graph shows the results if the stocks had the “running start.”

2) RealTime does not provide absolutely accurate estimates of arrival timing at Lower G

Dam; to the extent that there are errors in RealTime predictions, those errors will be propa

Julian Day
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MCN: Aug. 3 Prediction vs. 1999 Data
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MCN: Aug. 3 Prediction vs. 1999 Data

 Figure 1  CRiSP predictions for cumulative distribution of arrivals of the Composite stoc
at McNary Dam. Top: using existing travel time parameters. Bottom: using
travel time parameters that more accurately reflect the fact that they have bee
migrating for weeks or months already. Y-axis shows percent of total passage
22
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downstream by CRiSP. This year, RealTime predictions for some stocks began after the ru

already begun to pass (this can be observed with the truncated confidence interval for CAT

on the Inseason Forecast pages in the Passage Bar Graphs view), and is summarized in T

Also, RealTime does not necessarily use all of the PIT tags from a stock but uses particula

(tagged during a particular time period, by a particular group of researchers). This makes t

sample size smaller and therefore more sensitive to individual fish arrivals..

3) RealTime is a statistical procedure, and one should expect some degree of variation

the particular conditions observed in any given year. There is no reason to expect predictio

made on any particular date to perfectly fit the arrival distribution preceding that date, becau

final arrival distribution is contingent on arrivals through the entire system: if the run is 50% 

plete but RealTime estimates only 40% completion, for example, that will necessarily produ

error both before the prediction date (underestimating) and after it (overestimating, to catch

4) RealTime uses a conversion factor to estimate the true passage of PIT-tagged fish. T

based on spill efficiency and FGE (Burgess et al. 1999). The conversion is supposed to giv

CRiSP the passage distribution at the dam and the CRiSP runs proceed from a hypothetic

release just above Lower Granite Dam so that CRiSP can calculate the mortality associate

the dam passage. The conversion is supposed to account for unobserved fish that go over 

way. It does not attempt to make a correction for fish passing the dam through the turbines

ignores any transported fish that may be inadvertently removed from the river.

5) The data used to make the predictions is different from the data that is finally compile

the end of the year and used in this report for comparison to the model predictions. The DA

Table 7 Relationship of DART “first arrival” Julian day to RealTime “first
arrival” Julian day.

Stock
Julian day of first arrival at
LWG in DART database

Julian day of first arrival at
LWG in Realtime

Catherine Creek 116 146

Imnaha River 107 137

Minam River 90 121

S. Fork Salmon River 86 120
23
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database is updated regularly with additions and corrections for missing or corrected data.

Updates and corrections to PIT Tag records are received on a regular basis from the PTAG

database maintained by the Pacific States Marine Fisheries Commission. This is highly sig

cant given that the arrivals and detections at Lower Granite dam are the foundation for the in

the CRiSP model. This analysis queries the database for observation data and compares th

predictions made during the season. The final observation data is not the same data that w

to make the predictions.

6) Some data is missing and is never updated. The counts of fish at Little Goose Dam s

cantly exceed the counts at Lower Granite (Table 3) and this means that some data record

still missing. Most likely this is due to fish passing the dam without triggering a detector. Th

observed passage at a downstream dam is then skewed because the fish that escape the 

at Lower Granite are not random selections from the population of all fish in that stock that

the dam. Changes in dam operations, hydrologic conditions and mortality can skew the cou

either increasing or decreasing the detections even under the best conditions, but the magn

the differences are great for Lower Granite. This has a significant impact on the results of t

analysis because all downstream modeling efforts are going to be dependent on the initial

“release” of fish above Lower Granite Dam.

Errors in estimating the true distribution of fish is complicated by missing data and low n

bers, especially if these missing records (i.e. data points) are not a random subset of the tru

bution of records. This is important in the case of Catherine Creek where only a subset of th

stock is used to model the their movements (compare the counts in Table 3 and Table 4 for

rine Creek). In fact, missing and erroneous data are more likely to be biased as because th

pen during a certain interval of time when counting equipment is down or incorrectly opera

when data transmission is interrupted or faulty, or other kinds of problems that are discrete i

are later corrected.

7) CRiSP travel time parameters are based on historical conditions. A strong deviation 

the migratory behavior of their predecessors means that these migrants will not be modele

accurately. This is a fundamental problem with the modeling effort and can only be remedi

with recalibration during the season. Once the fish have entered the system, the model is m
24
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able to track their movements but the errors are propagated downstream as is noted by the

tency of the MAD between the Little Goose and McNary sites. The major exceptions (SALR

and CATHEC) are likely due to high mortality (or at least the low detections) that these fish 

rience before arriving at McNary.

8) Some errors are a fundamental result of using a model and relying on parameters to

describe basic relationships. The two main functions of CRiSP in this application are to mov

downstream and to keep track of survival and passage routes of fish. The primary model in

are forecasts of flow and spill fractions. Flow is an important input because it partially determ

the downstream migration rate of the fish. Behavior-dependent migration rate parameters a

confidence intervals about estimates of arrival distributions are based on only a few years o

The downstream passage distributions are based on modeled numbers of fish passing the

detectors. Diversion of migrating fish into sampling systems that detect PIT-tagged fish dep

upon the efficiency of spillways and fish diversion screens. The accuracy of CRiSP also de

upon our correctly estimating the values of these parameters.

Spill has several effects on model output. First, it affects the passage routes of the fish 

higher spills, fewer fish pass through the bypass system where PIT-tagged fish can be dete

Survival of migrating fish is also affected by spill: high levels of spill lead to high dissolved g

levels, causing potentially lethal gas bubble trauma, behavioral alteration, and vulnerability

predation. Distinct sigmoidal arrival distributions at dams below Lower Granite Dam may b

result of high levels of spill at those projects: fish that were detected at Lower Granite could

been swept over the spillways of lower dams, and would not have been detected. The sudd

tening of cumulative arrival distributions means that fish are not being detected and either d

were spilled. Cramer (1996) found an association between high levels of dissolved gas and

increased smolt mortality during the 1996 outmigration.

In previous years, CRiSP has done a better job of predicting the passage of fish in the s

because the inputs to the model were more complete (such as arrivals at Lower Granite da

did not vary through the season (i.e. resulting from corrections to PIT-tag database). Other 

model errors are hard to assess for this year, but the MAD values for 1998 (Table 6) sugge

the actual runtime processes are reasonably reliable.
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It is not easy to explain the rise in the MAD as the season progresses. Minor fluctuation

the trend of MAD throughout the season are a result of the discrete nature of the percentag

dicted by RealTime and the “punctuated equilibrium” of the database that CRiSP relies upo

flows, etc. A steady rise in the MAD values through the season may suggest the times whe

data was arriving and rendering the older modeling runs obsolete. As the season continues

a time when a correction takes place, the differences are magnified.

4.2 Utility of CRiSP/RealTime Predictions in Management

Flow augmentation for control of discharge; temperature; spill timing and fraction; transp

tion operations; etc. are some of the many examples of how managers can adjust the hydro

for the benefit of salmon. However, this requires accurate assessments of the status of salm

migration and planned responses to various contingencies. For example, one might elect t

port juvenile chinook at collection facilities, but separate fish when flows fall below some ta

value until the run has reached 80%. This policy requires an accurate assessment of when

80% level is reached. Similarly, a policy that seeks to transport a given fraction of the run, 

50%, can only be done if one has estimates of the state of the run and the fraction transpo

date.

The cumulative passage forecasts provide managers with estimates of the fraction of a

run that will be exposed to expected spill, flow, dissolved gas levels, and transportation dur

given period of interest - generally the next one to two weeks. This allows both quantitative

qualitative assessment of the exposure these fish will experience to the conditions. Within 

the managers can choose to modify operational conditions. If spill is to be targeted for part

stocks, the CRiSP/RealTime estimates of arrival distributions would allow managers to dire

spill at the projects where the bulk of the run is passing and reduce spill at projects where fe

are passing, in order to control dissolved gas levels.

With accurate reporting of PIT-tagged fish arrivals, inputs to the CRiSP model can be m

more accurate; however, it cannot make up for other inaccuracies in its inputs.

Next year, several additions are planned for CRiSP/RealTime. First, we will keep a runn

record of the PIT-tag database so that individual model runs can be compared exactly to th
26
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from which they were created, although it means using un-official data because the update

designed to keep the database as current as possible.

Second, we are also considering ways to minimize the errors in the transfer of informat

between RealTime and CRiSP. Since the processes are automated but separately develop

details that may have an impact will be investigated. For example, RealTime calculates FG

under certain flow conditions and this is necessary for use in PIT Tag detection expansion,

whereas FGE in CRiSP is fixed. Possible ways to handle this are: use the calculated FGE 

modify CRiSP data files for each run, or calculate expansion factors ourselves. Another ex

is the use of flow data. RealTime makes a daily query of DART for daily flows and spills at

Lower Granite dam and this is used in the expansion factors. CRiSP uses a flow forecast f

vided by the Army Corps and updated every two weeks. The important difference between

Time and CRiSP’s data needs is that CRiSP needs forecasts of flow and spill in order to mo

fish downstream.

Third, we are considering either modifying the travel time parameters so that the release

in the model will be allowed to migrate at the rate observed for since they are already exper

and migrating at close to their maximum speed or calibrating the travel time for this special

release of fish independently.

These efforts should serve managers in several ways:

1. Examine the magnitude of corrections that occur through the season. We hope thes
be small and insignificant, but sensitivity to them will be explored.

2. Track the effect of these corrections on MAD and passage predictions.

3. Suggest methods for discounting early season predictions in the overall analysis.

4. Reduce the error between CRiSP predictions and observations.
27
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Appendix A  Map of Columbia and Snake River Locations
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 Figure A-1 Map of CRiSP locations

“●” are dam locations (not all are labelled by name). “✩” are approximate release locations

with a key letter as follows: S=SALRSF, M=MINAMR, C=CATHEC, and I=IMNAHR. The

darker river segments are explicitly modeled in CRiSP. Other segments are shown for refer-

ence only. Spill, elevation and flow predictions are made by BPA atall shown dams. Tem-

perature predictions are made at Lower Granite (LWG), Priest Rapids (PRD) and The Dalles

(TDA). Total dissolved gas is monitored at sites downstream of all dams shown and analyzed

for sites below Lower Granite-LWG (LGNW), Little Goose-LGS (LGSW), McNary-MCN

(MCPX), Priest Rapids-PRD (PRXW), and Bonneville-BON (SKAW). The stocks analyzed

in this report pass Lower Granite Dam (their arrivals predicted by RealTime) and results are

presented for their arrivals at Little Goose (LGS), Lower Monumental (LMN) and McNary

(MCN).
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Appendix B  CRiSP Parameters

For stock specific parameters used for CRiSP Yearling Chinook (Chinook 1) model run

the 1999 values in Table B-4.

Table B-1 Dam Specific Parameters used for CRiSP runs

Dam FGE Spill
Mort

Bypass
 Mort

Tur-
bine
Mort

Spill
Eff.

Forebay
Pred. Den-

sity

Tailrace
Pred. Den-

sity

Bonneville 0.30 0.02 0.02 0.07 1.0 5236 153800

Bonneville II 0.54 0.00 0.02 0.07 -

The Dalles 0.34 0.02 0.02 0.07 2.0 8336 5010

John Day 0.58 0.02 0.02 0.07 1.0 704 16168

McNary 0.72 0.02 0.02 0.07 1.0 192 16437

Ice Harbor 0.54 0.02 0.02 0.07 1.0 1222 9085

Lower
Monumental

0.55 0.02 0.02 0.07 1.2 7432 1391

Little Goose 0.60 0.02 0.02 0.07 1.0 6952 17210

Lower Granite 0.56 0.02 0.02 0.07 1.0 6282 286890

Table B-2 Species Specific Parameters used for CRiSP runs

Species Reach Pred.
Coef.

Forebay Pred.
Coef.

Tailrace Pred.
Coef.

Chinook 1 12.70 18.00 0.00

Table B-3 Reservoir Specific Parameters used for CRiSP runs

Reservoir Predator Density

Estuary 1902

Jones Beach 1789
B-2
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Columbia Gorge 1639

Bonneville Tailrace 6246

Bonneville Pool 2133

The Dalles Pool 1510

Deschutes Confluence 1510

John Day Pool 334

McNary Pool 6160

Lower Snake River 894

Ice Harbor Pool 427

Lower Monumental Pool 1012

Little Goose Pool 572

Lower Granite Pool 1247

Table B-4 Migration Parameters used by CRiSP for Confidence Intervals

Y
ear

Jackknifed

parameter estimates (std. error)

Vvar
resid.

ssβMIN βMAX βFLOW α2

Catherine Creek Stock

93 -6.3400 -1.8521 2.3468 0.2944 38.73 4711.425

94 -2.6222 0.4974 1.7534 0.0000 39.71 1288.552

95 -6.4904 -2.7584 0.50a 0.3584 40.00 5467.197

96 -4.1784 11.5122 1.7827 0.0602  44.54  5517.249

97 -5.3480 3.9645 1.9716 0.1671 41.42 6887.285

98 -5.3480 3.9645 1.9716 0.1671 41.42 5167.857

99 -5.9753 4.9107 2.0467 0.1542 41.37 5582.053

Imnaha River Stock

93 -1.4130 18.3623 1.1713  0.1041 36.84 2632.453

Table B-3 Reservoir Specific Parameters used for CRiSP runs

Reservoir Predator Density
B-3
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a. This is the default value for this parameter, not the jackknifed value for this parameter.

94 0.1710 14.4079 0.5498 0.4572 30.81 2258.397

95 -1.4712 16.9865 0.8889 0.2373 34.59 2846.131

96 -0.6596 16.1101 0.8421 0.2046 34.01 2986.790

97 -0.5450 16.1572 1.2536 0.1258 37.15 2769.147

98 -0.5450 16.1572 1.2536 0.1258 37.15 1801.514

99 -3.3591 7.0722 1.1636 0.6471 34.31 3225.595

Minam River Stock

93 0.8249 22.4767 0.5811 0.1109 42.71 6832.111

94 -0.2849 21.1060 0.2499 0.5573 36.61 4635.988

95 -4.2305 8.9489 1.6245 0.0884 39.74 6424.509

96 -3.2019 7.9086 1.1548 0.3809 41.98 7010.502

97 1.8796  22.1912 0.4566 0.1418 39.41 3801.374

98 1.8796  22.1912 0.4566 0.1418 39.41 6690.529

99 0.0077 13.9021 0.6185 0.3057 40.30 7114.040

Salmon River South Fork Stock

93 -0.3820 14.9981 0.7197  0.2306 72.43  6768.456

94 2.5756 17.8479 0.2146 0.3406 61.29 3698.904

95 0.0055 13.1108  0.6267 0.3077 79.58 6539.851

96 -0.3180 12.1921 0.6045 0.4512 72.58 7616.208

97 -1.3661 12.2825 0.4077 1.0126 74.98 7113.484

98 -1.3661 12.2825 0.4077 1.0126 74.98 6347.985

99 2.2406 28.5146 0.4246 0.0959 72.58 7628.115

Table B-4 Migration Parameters used by CRiSP for Confidence Intervals

Y
ear

Jackknifed

parameter estimates (std. error)

Vvar
resid.

ssβMIN βMAX βFLOW α2
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Appendix C  Arrival Time Distribution plots

The following figures present the CRiSP/RealTime predictions on May 11, June 2 and J

The dates represent pre-migration, mid migration and late migration times. The dashed line

sent the model predictions and the solid line is the observed distribution of PIT tag arrivals a

(either Lower Granite, Little Goose, Lower Monumental and McNary). The predicted distribu

at Lower Granite Dam is generated by the Realtime program, and the predicted distribution

Little Goose, Lower Monumental and McNary are CRiSP projections based on the Lower G

prediction. The vertical line in each plot is the date of the prediction. The solid line shows th

Confidence Interval based on historic data. Not all plots have confidence intervals displaye

historical runs can be displayed on world wide web pages devoted to presentation of arriva

data. The home page for the project is found at http://www.cqs.washington.edu.
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Composite Stock - Lower Granite Dam (LWG)
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 Figure C-1 RealTime predictions for cumulative distribution of arrivals of the
Composite stock at Lower Granite Dam. Y-axis shows percent of total passage
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Composite Stock - Little Goose Dam (LGS))
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 Figure C-2 CRiSP predictions for cumulative distribution of arrivals of the
Composite stock at Little Goose Dam. Y-axis shows percent of total passage.
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Composite Stock - Lower Monumental Dam (LMN)
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 Figure C-3 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Lower Monumental Dam.Y-axis shows percent of total passage.
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Composite Stock - McNary Dam (MCN)
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 Figure C-4 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at McNary Dam. Y-axis shows percent of total passage.
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Composite Stock - Bonneville Dam (BON)
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 Figure C-5 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Bonneville Dam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Granite Dam (LWG)
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 Figure C-6 RealTime predictions for the cumulative distribution of arrivals of the Cathe-
rine Creek stock at Lower Granite Dam. Y-axis shows percent of total passage
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Catherine Creek – Little Goose (LGS)
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 Figure C-7 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Little Goose Dam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Monumental (LMN)
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 Figure C-8 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Catherine Creek – McNary Dam (MCN)
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 Figure C-9 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at McNary Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Granite Dam (LWG)
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 Figure C-10 RealTime predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Granite Dam. Y-axis shows percent of total passage.
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Imnaha River – Little Goose Dam (LGS)
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 Figure C-11 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Little Goose Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Monumental Dam (LMN)
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 Figure C-12 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Imnaha River – McNary Dam (MCN)
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 Figure C-13 CRiSP predictions for the cumulative distribution of arrivals of the
Imnaha River stock at McNary Dam. Y-axis shows percent of total passage.
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Minam River – Lower Granite Dam (LWG)
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 Figure C-14 Realtime predictions for the cumulative distribution of arrivals of the
Minam River stock at Lower Granite Dam. Y-axis shows percent of total pas-
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Minam River – Little Goose Dam (LGS)
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 Figure C-15 CRiSP predictions for the cumulative distribution of arrivals of the
Minam River stock at Little Goose Dam. Y-axis shows percent of total passage
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Minam River – Lower Monumental Dam (LMN)
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 Figure C-16 CRiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
C-17



A

Minam River – McNary Dam (MCN)
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 Figure C-17 CRiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at McNary Dam. Y-axis shows percent of total passage.
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South Fork Salmon River –Lower Granite Dam (LWG)
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 Figure C-18 RealTime predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Granite Dam. Y-axis shows percent of total passage.
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 Figure C-19 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at Little Goose Dam. Y-axis shows percent of total passag
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South Fork Salmon River – Lower Monumental Dam (LMN)
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 Figure C-20 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Monumental. Y-axis shows percent of total passage.
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South Fork Salmon River – McNary Dam (MCN)
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 Figure C-21 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at McNary Dam. Y-axis shows percent of total passage.
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Appendix D  Seasonal Variation in Passage Predictions

Passage predictions during the season vary as function of changes in river conditions f

past predicted values. RealTime predictions of arrivals at Lower Granite Dam are used as i

CRiSP1 which then predicts the arrival of fish at downstream locations. In the figures that fo

MAD computations for each modeled day of arrivals at Lower Granite Dam, Lower Monum

Dam and McNary Dam are displayed. Patterns of prediction success at an upstream locati

propagated downstream.
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 Figure D-1 Seasonal variation in passage prediction success for the Composite stock at L
Goose, Lower Monumental and McNary Dams Y axis is theMAD value.
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 Figure D-2 Seasonal variation in passage prediction success for Catherine Creek stocks a
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-3 Seasonal variation in passage prediction success for Imnaha River stocks at L
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-4 Seasonal variation in passage prediction success for Minam River stocks at Li
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-5 Seasonal variation in passage prediction success for South Fork Salmon River 
at Little Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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Appendix E  Flow/Spill Forecast Plots

Flow and Spill plots for four dams: Lower Granite (LWG), Priest Rapids (PRD), The Dal

(TDA), and Bonneville (BON). The Y axis on the graphs is cubic feet per second (CFS). Th

tical line in the plot marks the date of the prediction.
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 Figure E-1 Flow predictions and observations for Lower Granite Dam. Y axis shows CFS
E-2



A

.

Julian Day
50 100 150 200 250

0

20000

40000

60000

80000

100000
Data
Prediction

LWG: Mar. 25 Prediction vs. 1999 Data

Julian Day
50 100 150 200 250

0

20000

40000

60000

80000

100000
Data
Prediction

LWG: May. 10 Prediction vs. 1999 Data

Julian Day
50 100 150 200 250

0

20000

40000

60000

80000

100000
Data
Prediction

LWG: Jul. 6 Prediction vs. 1999 Data

 Figure E-2 Spill predictions and observations for Lower Granite Dam. Y axis shows CFS
E-3



A

Julian Day
50 100 150 200 250

0

50000

100000

150000

200000

250000 Data
Prediction

PRD: Mar. 25 Prediction vs. 1999 Data

Julian Day
50 100 150 200 250

0

50000

100000

150000

200000

250000 Data
Prediction

PRD: May. 10 Prediction vs. 1999 Data

Julian Day
50 100 150 200 250

0

50000

100000

150000

200000

250000 Data
Prediction

PRD: Jul. 6 Prediction vs. 1999 Data

 Figure E-3 Flow predictions and observations for Priest Rapids Dam.Y axis shows CFS.
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 Figure E-4 Spill predictions and observations for Priest Rapids Dam. Y axis shows CFS.
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 Figure E-5 Flow predictions and observations for The Dalles Dam. Y axis shows CFS.
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 Figure E-6 Spill predictions and observations for The Dalles Dam.Y axis shows CFS.
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 Figure E-7 Flow predictions and observations for Bonneville Dam.Y axis shows CFS.
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 Figure E-8 Spill predictions and observations for Bonneville Dam.Y axis shows CFS.
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Appendix F  Spill Forecast History Plots

Spill predictions during the early season are difficult to make. Shown here are late Marc

dictions compared to data for Priest Rapids and Ice Harbor. For the last three years, there h

at least one spike in the spill volumes (mostly due to large flows in the system).
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 Figure F-1 Early season spill predictions for the last three years compared to data at Pri
Rapids Dam.
F-2



A

Har-
Julian Day
50 100 150 200 250

0

50000

100000

150000 Data
Prediction

IHR: Mar. 24 Prediction vs. 1997 Data

Julian Day
50 100 150 200 250

0

50000

100000

150000
Data
Prediction

IHR: Mar. 31 Prediction vs. 1998 Data

Julian Day
50 100 150 200 250

0
20000
40000
60000
80000

100000
120000
140000

Data
Prediction

IHR: Mar. 25 Prediction vs. 1999 Data

 Figure F-2 Early season spill predictions for the last three years compared to data at Ice 
bor dam.
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Appendix G  Temperature Forecast Plots
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 Figure G-1 Temperature predictions and observations for Lower Granite Dam. Y axis is 
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 Figure G-2 Temperature predictions and observations for Priest Rapids Dam. Y axis is ˚
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 Figure G-3 Temperature predictions and observations for The Dalles Dam. Y axis is ˚C.
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Appendix H  Seasonal Variation in Temperature Forecasts

For each day that a prediction was made, the Mean Absolute Deviation was calculated 

each day in the season for which there was both an observation and a prediction. (See tex

“Assessment of Predictions” on page 10).

These MAD values are plotted as a time series to see how the predictions changed thro

season. If the predicted values exactly matched the observations, the MAD for that day wo

zero. In the plots that follow, the MAD value is on the Y-axis and the Julian day is on the X
H-1
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 Figure H-1 Seasonal variation in temperature prediction success at three locations as me
by MAD (Y-axis).
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Appendix I  Dissolved Gas Forecast Plots

Total dissolved gas predictions and observations are shown in the following plots for fiv

monitoring sites downstream from dams. The X-axis is the Julian day and the Y-axis is the

centage super-saturation.
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 Figure I-1 Total Dissolved Gas predictions and observations for Lower Granite Dam as
measured at LGNW. Y axis is the percent saturation.
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LGSW: Apr. 23 Prediction vs. 1999 Data
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Julian Day
100 150 200 250

100

105

110

115

120

125

.

..
....

..............
.
......

.
.........................

.
.

.....................
.
..............

.................
........

..
.....

..........
.......

..
............................

Data
Prediction
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 Figure I-2 Total Dissolved Gas  predictions and observations  for Little Goose Dam as m
sured at LGSW. Y axis is the percent saturation.
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MCPW: Apr. 23 Prediction vs. 1999 Data
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MCPW: Jun. 22 Prediction vs. 1999 Data
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MCPW: Sep. 3 Prediction vs. 1999 Data

 Figure I-3 Total Dissolved Gas  predictions and observations  for McNary Dam as measu
at MCPW. Y axis is the percent saturation.
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PRXW: Apr. 23 Prediction vs. 1999 Data
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PRXW: Jun. 22 Prediction vs. 1999 Data
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PRXW: Sep. 3 Prediction vs. 1999 Data

 Figure I-4 Total Dissolved Gas  predictions and observations  for Priest Rapids Dam as m
sured at PRXW. Y axis is the percent saturation.
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SKAW: Jun. 22 Prediction vs. 1999 Data
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SKAW: Sep. 3 Prediction vs. 1999 Data
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 Figure I-5 Total Dissolved Gas  predictions and observations  for Bonneville Dam as me
sured at the SKAW site. Y axis is the percent saturation.
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Appendix J  Seasonal Variation in TDG Forecasts

Prediction success for Total Dissolved Gas throughout the season is show for five moni

sites below dams. The X-axis is the Julian day and the Y-axis is the average daily error in p

age (points) for the prediction made on that day compared to the data for the entire season
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 Figure J-1 Season variation in Total Dissolved Gas prediction at three monitoring sites be
Lower Granite Dam, Little Goose Dam and McNary (top to bottom respectively).
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 Figure J-2 Season variation in Total Dissolved Gas prediction at two monitoring sites belo
Priest Rapids Dam and Bonneville Dam (top to bottom respectively).
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