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There are striking geographical and temporal patterns of juvenile chinook migrations that
are not well understood. Chinook populations that migrate to the sea during their first year
of life—ocean-type populations—predominate in latitudes north ®YN\G6vhile those
migrating later—stream-type populations—predominate south of the Columbia River. In
rivers where these two life history types are sympatric, ocean-types are typically
distributed more coastally than stream-types. Controversy exists over whether these
patterns are the result of postglacial dispersal, or a result of geographical gradients in
natural selection.

In this dissertation, | explore the selective pressures on migration timing of chinook
salmon by using increasingly complex dynamic optimization models. The optimization
models predict that migration distance can strongly influence migration timing, but other
biological and physical quantities are also important. Models also suggest that
geographical patterns of “growth opportunipér sedo not drive age at migration

patterns observed.

A dynamic optimization model reveals two types of optimal behavior that, when
appropriately pieced together, produce an optimal migration strategy. One behavior is
characterized as “feeding and predator avoidance” and the other, “active migration.” The
optimal behavior is determined by the signs of two model-derived “switching functions,”
and the value of the maximum current velocity relative to the swimming speed that
maximizes growth. Optimal strategies determined numerically show that behavior often
switches from initial feeding and predator avoidance, to active downstream migration as
the fish develops and/or during changes in environmental conditions.
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PREFACE

This dissertation contains a succession of increasingly more complex models to describe
the migration patterns of juvenile chinook salmon, focusing on the adaptive significance

of the relationship between age at migration and geographical distribution, and migration
behavior itself. | take the behavioral ecology approach of optimization modelling,

designed to help understand why animals behave as they do. This approach stands in
contrast to those that predict behavior solely on the basis of proximate mechanisms. These
two methods present two different—although related through physiological constraints—
ways to understand juvenile chinook behavior. When held together, they give broader

perspective than either approach alone.

My approach is simple. | develop parsimonious models aimed at capturingsibe

tradeoffs of different behaviors, respecting certain physiological constraints, where
benefits and costs are measured in terms of survival and reproduction. These simple
models, although frequently attacked for not including all relevant information, harbor the
greatest potential for yielding useful biological insights. Furthermore, in simple models,
components that drive solutions are more easily identified. For example, in CHAPTER 6,
signs of the “switching functions,” which measure the costs and benefits of movement
downstream, determine which of two general behavior types— “feeding and predator

avoidance” or “active downstream migration”— is optimal.

XiX



With the risk of invoking hostility from all quarters, | encroach upon the territory of
researchers working to understanding migration behavior from a particular point of view
shaped by their salmon habitat of interest. However, | beliewgegratedapproach, one

that considers patterns of growth and mortality in streams, rivers, estuaries, and the ocean,
for example, is essential for understanding the adaptive significance of migration timing
and behavior. Would selection favor a seaward migration over a distance of 3,200 km from
the headwaters of the Yukon River if the Pacific Ocean did not harbor tremendous growth

potential?

Lastly, | want to stress that my work does not preterekpdaingeographical and

temporal patterns of migration, and | do not believe that any of the models are “correct,”
nor could they ever be. But | do believe that the modelasatilsince they suggest new
hypotheses for migration behavior and suggest experiments for further understanding this
behavior. This is usually the most that can be hoped for when modelling biological

phenomena.

Seattle, October 1994 R. A. Hinrichsen
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CHAPTER 1 INTRODUCTION

1.1 Background

Chinook salmorfOncorhynchus tshawytschahd other Pacific salmon species may have
evolved as late as .5 to 1 million years ago (Neave, 1958) or as early as two or three
million years ago (Thomaet al, 1986). They are anadromous and semelparous, like all
Oncorhynchuspecies, and are distinguished by their large adult size and by their broad
variation in age at seaward migration, length of estuarine and ocean residence, ocean
distribution, and age at maturity. Spawning populations have a geographical range
extending south to California’s Ventura River {84 and north to Point Hope, Alaska, and
east to the Mackenzie and Coppermine rivers (Hallock & Fry, 1967; McPhail & Lindsey,
1970; Leeet al, 1980; McLeod & O’Neil, 1983; Taylor, 1990). On the Asian coast, they
range from northern Hokkaido to the Anadyr River (Berg, 1948; Shmidt, 1950; Hikita,

1956; Vronskiy, 1972; Majoet al, 1978).

The downstream migration of juveniles is both “facultative” and “obligatory” in the sense
that it can be initiated by apparent overcrowding, absence of food, abundance of predators,
high flow conditions, or other exogenous factors (“facultative” migration), and also by

their stage of ontogeny or smolt condition (“obligatory” migration) (Baker, 1978).

Smolting is a developmental process characterized by a set of physiological,
morphological, and behavioral changes that prepare salmon for a salt water environment

(Dickhoff & Sullivan, 1987). It is marked by dermal purine deposition (silvery skin),
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osmoregulation, and an increase in thyroid hormones. The rate of smolting varies among
populations for either genetic or environmental reasons, and contributes to variation in the

age and season of migration.

Two early life history types (races) are identified based on age at migration from
freshwater to saltwater (Gilbert, 1913; Clagteal, 1992). One race, designated “stream-
type,” spend one or more years as fry or parr in fresh water before migrating to sea. The
second race, “ocean-type”, migrates to sea during their first year of life, normally within 3

months of emergence from spawning gravel (Healey, 1991).

1.2 Literature review of juvenile migratory behavior

The following literature review focuses on studies of juvenile chinook migratory behavior
separated into four categories: migration timing, seasonal migration patterns, diurnal
migration patterns, and stream velocity selection. The first three categories could all be
placed under the heading of migration timing. The questions asked are “In what year after
emergence does the fish migrate?”, “During what time of the year?”, and “During what
time of the day?” Each of these questions is important, for there are many processes,
acting over small to large time scales, exogenous or endogenous, that create hourly,

seasonal, and yearly migration patterns.

1.2.1 Migration timing

There are two important geographic patterns observed in juvenile chinook migration
timing: (1) chinook populations are predominantly “ocean-type” south of the Columbia
River (coastal Oregon rivers and streams, California rivers such as the Sacramento and

San Joaquin Rivers), and “stream-type” north of the Skeena RiveN(gGnd (2) in



3
rivers where they are sympatric, (e.g. the Columbia and Fraser Rivers), “ocean-type”
populations tend to be distributed in coastal regions, while “stream-type” populations are

distributed inland.

Although these general patterns are quite striking, there are exceptions. For example, the
Hells Canyon reach of the Snake River (located between RK 240.5 and RK 396.6), despite
its distance its long distance from the ocean, is rearing habitat for ocean-type chinook. The
Vernita Bar spawning populations (located between RK 345 and RM 397) on the
Columbia River, are also ocean-type. There are also exceptions to the more northern
distribution of stream-type populations: stream-type chinook populations exist in two
upper tributaries of the Sacramento R. of California—Mill and Deer Creeks (F. Fisher,

Stockton, CA, pers. comm.).

1.2.1.1 Latitudinal gradient

The latitudinal gradient (FIGURE 1.1) has been studied by Taylor (1990), who looked at

the pattern from three points of view: zoogeography, growth, and selection.

ZoogeographyChinook salmon likely survived the last (Wisconsinan) glaciation in two
main refugia: (i) “Beringia,” a northern region consisting of the lower Yukon and exposed
portions of the Bering Sea and Siberia; and “Cascadia,” defined as areas south of glaciers
west of the Continental Divide (Lindsey & McPhail, 1986; McPhail & Lindsey, 1986).
During deglaciation, chinook dispersed and settled along the Pacific Coast. According to
the hypothesis, “stream-type” chinook persisted in the Beringia, and “ocean-type”, in the

Cascadia, and after deglaciation, they maintained their north-south distribution.
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FIGURE 1.1 Distribution of stream- and ocean-type juvenile chinook salmon life-
histories in the North Pacific (Taylor, 1990). Shading represents the approximate
fraction of each early life-history type. A completely blackened circle represents 100%
stream-type, and an open circle represents 100% ocean-type. The number next to each
circle is the number of populations surveyed. Regions surveyed are (clockwise from
left): Kamchatka R., south-western Alaska, lower Yukon R., upper Yukon R., south-
central Alaska, south-eastern Alaska and northern British Columbia, central British
Columbia, Fraser River, Vancouver Island and coastal Washington, lower Columbia R.,
upper Columbia R., coastal Oregon, and California.

Growth.Next is the “growth opportunity” point of view. Stream-type chinook are

generally associated with regions of lower growth opportunity than ocean-type chinook.
The north-south temperature gradient contributes to a like gradient in growth opportunity
(i.e. regions to the south present higher growth-opportunity than northern regions). Since

smolting contributes to the propensity for juveniles to move downstream, and smolting is
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driven by temperature-related variables such as photo-period and growth, this pattern is

not surprising.

SelectionSelection for size at migration, coupled with selection for migration during
seasonal time “windows,” might promote genetic differences in juvenile life-history.
Locomotor and osmo-regulatory performance are inhibited at low temperateires(d
climates north of 5§ (Brett, 1967; Knutsson & Garv, 1976; Beamish, 1978; Webb, 1978;
Virtanen & Oikari, 1984). Therefore, larger smolt size may be selected in the cold
northern environments, because larger smolts have an increased performance benefit
(Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves & LeBrasseur, 1986).
This benefit of larger smolt size could lead to longer freshwater residence times in the
north. Age at migration is in part, inherited in salmonids—a condition necessary if
selection is to play a role in shaping it (Rich & Holmes, 1928; Ricker, 1972; Reffsilie

1977; Thorpe & Morgan, 1978; Carl & Healey, 1984; Taylor, 1988, 1989a,b).

1.2.1.2 Migration distance gradient

The migration distance pattern observed in migration timing data is quite simple: south of
56° N, longer migrations generally produce longer freshwater residence times (FIGURE
1.2). Two important selection-based factors are thought to explain why this pattern exists
(Taylor, 1990). Larger migration distances, select for large smolt size at migration, due to
(1) increased energetic demands (Gilhousen, 1980; Taylor & McPhail, 1985) and (2)
greater exposure to freshwater predators (Larsson, 1985; Ruggertone, 1986) relative to

short migrations.
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FIGURE 1.2 Distribution of stream (darkened fish) and ocean-type (white fish)
chinook salmon life-history types in tributaries of the Columbia River (Taylor, 1990).

1, upper Willamette R.; 2, lower Willamette R.; 3, upper Deschutes R.; 4, lower
Deschutes R.; 5, John Day R.; 6, Tucannon R.; 7, Grande Ronde R.; 8, Imnaha R.; 9,
Little Salmon R.; 10, South Fork Salmon R.; 11, Bear Valley Cr.; 12, Marsh Cr.; 13,
Middle Fork Salmon R.; 14, upper Salmon R.; 15, East Fork Salmon R.; 16, Lemhi R.;
17, Yakima R.; 18, Wenatchee R.; 19, Gray’s R.; 20, Elochoman R.; 21, Klatskanie R.;
22, Methow R.; 23, lower Wenatchee R.; 24, Klickitat R.; 25, Washougal R.; 26, Gray’s
Harbor; 27, Cowlitz R.; 28, Columbia R. (Vernita Bar); 29, Snake R. (Hells Canyon
Reach).

1.2.2 Seasonal migration pattern

Seasonal patterns of migration timing are hypothesized to be based on water velocity,
turbidity, and temperature—correlated factors that likely work together. Observations

show that juveniles tend to migrate with higher stream flows (Mains and Smith, 1964;
Raymond, 1968; Reimers, 1968; Salo, 1969; Wetherall, 1970; Sibakd973; Becker,

1973a; Anonymous, 1976; Kjelsem al, 1982); during periods of increased water
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turbidity (Junge and Oakley, 1966); and with fluctuations in water temperature (Mains &
Smith, 1964; Becker, 1973b). Downstream movement of fry is typically greatest between

February and May, and is earlier in more southern populations (Healey, 1991).

1.2.3 Diel migration pattern

Natural light intensity appears to be the major environmental factor controlling diel
migration patterns of salmonid fry (Mains & Smith, 1964; Smith, 1974;Godin, 1982).
Studies on diel movements abound, and do not show consistent results, but the majority of

the studies demonstrate that chinook juveniles migrate mostly at night (TABLE 1).

One selection-based hypothesis that can explain this diurnal pattern is that juveniles
migrate mainly at night to avoid predators (Neave, 1955). If migrating during the
nighttime confers a fitness advantage, then we should look for mechanisms that produce
the behavior. Nighttime movement has been described as “passive” by some, the idea is
that movement is a result of loss of visual contact with surroundings (McDonald, 1960), or
a reduction of rheotactic response (Hoar, 1953). However, Datialg(1989) suggests

that migration is not controlled solely by passive mechanisms.



TABLE 1.1 Summary of diel observations of juvenile chinook salmon in various
Pacific Northwest Rivers (Ledgerwoetlal, 1991)2

Race Location Time of Largest Catch Source
stream Central Ferry Bridge At night between 0300 and Mains & Smith 1964
(Snake R.) 0600h.
stream Byer’s Landing At night. 70%between 1800 anMains & Smith 1964
0600h.
stream John Day (Columbia R.) During daylight between 0700Simset al. 1976
and 2100h.
stream Lower Monumental At night (92%). Smith 1974
(Snake R.)
stream Mayfield (Cowlitz R.) At night. 92% between 2000 andllen 1965
0800h.
stream Upper Mayfield (Cowlitz R.) At night. Smithal 1968
stream North Fork (Clackamas R.) At night. Katnal 1967
stream Rocky Reach (Columbia R.) At night. Leman 1978
stream John Day (Columbia R.) At night (92%). Senal 1976
stream The Dalles (Columbia R.) At night. 94% between 1900 ahdng 1968
0700h.
stream The Dalles (Columbia R.) During daylight. 89% betweenSimset al 1976
0700h and 2100h. Nichols 1979
stream The Dalles (Columbia R.) During daylight. Nichols 1979
stream Hanford Reach (Columbia At night. Peak between 2200 andDaubleet al 1989
R.) 0400h
ocean Puget Island and Jones During daylight. 90% between Dawleyet al 1986
Beach (Columbia R. estuary) 0600 and 2100h.
ocean Sixes R. (Oregon) At night. Reimers 1973
ocean John Day (Columbia R.) During daylight. Sensl 1976
ocean John Day (Columbia R.) At night (88%) Sims and Ossiander
1981
ocean The Dalles (Columbia R.) At night. 67% between 1900 ahdng 1968
0700h.
ocean The Dalles (Columbia R.) During daylight. Swhal. 1976
Nichols & Ransom
1980
ocean The Dalles (Columbia R.) During daylight. Nichols & Ransom
1980
ocean Skagit River (Washington) At night. Peak between 2000 abdvis 1981
0300h.

a All sources except Daubkt al (1989) and Davis (1981) are included in the Ledgervetad (1991) analysis.



1.2.4 Current velocity selection

Despite the wide variation in migration timing observed among chinook populations, there
appears to be one feature that is consistent throughout their range: larger fish are usually
associated with swifter currents than smaller fish (Chapman & Bjornn, 1969; Lister &
Genoe, 1970; Wickmire & Stevens, 1971; Everest & Chapman, 1972; Schaffter, 1980;
Allen & Hassler, 1986; Daublet al, 1989). Swifter currents typically have a greater food
delivery rate ¢als™ ), and can carry greater feeding opportunity for the juveniles (Elliot,
1967; Everest & Chapman, 1972; Fausch, 1984). As a trade-off, adjacent velocities
selected by the fish may also be swift, requiring a greater energetic investment to feed
(Jenkins, 1969; Fausch, 1984). Furthermore, the faster currents—typically located
midstream—may bring a higher predation risk than slower, inshore currents. This
underscores a trade-off inherent in many ecological processes: the trade-off between

growth and the risk of predation.

From an adaptationist’s viewpoint, the relationship between current velocity and size may
be favored by natural selection. Smaller fish may be more vulnerable to predators, and
increase survival changes by remaining in slower moving currents often associated with
cover (Solomon, 1981). A social hypothesis is also possible. The larger fish are likely
more socially dominant than the smaller ones (Newman, 1956; Kalleberg, 1958; Jenkins,
1969; Bassett, 1978), and may defend territories containing the swifter currents,

presumably because such territories offer greater food delivery rates.
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1.3 Optimization modelling approach

1.3.1 Migration timing

Some researchers, taking an adaptationist’s viewpoint, have recently developed an
optimization model to describe the relationships between initial length, survival and
growth in fresh and salt water, and migration timing (Boétial, 1993a; Mangel, 1994).

Bohlin et al. (1993a) argue that

“If fish migrate to increase growth rate and thereby fecundity
(Gross, 1987), and if postmigratory mortality is negatively size
dependent, then the benefit of early migration would be faster
growth (as a result of longer time spent in the more productive
environment), and the cost would be increased mortality (as a result
of smaller body size at migration). The optimal migration time may
therefore be the date at which the profit (benefit minus the cost) is
maximized ... The individual optimal might be predicted from life
history theory by assuming that natural selection tends to favour
reaction norms which maximize the lifetime fitness or reproductive
value.”

This problem can be described mathematically by representing the profit or “fithess” as
the log of lifetime reproduction, where lifetime reproduction is the product of pre-
migratory survival, the survival after the onset of migration, and fecundity, then
determining the effect of a marginal increase of age at migration. At the optimal age at
migration, the marginal change in profit is zero. The problem allows for both immediate
and future ramifications for decisions. So, for example, migrating out of freshwater during
a period of increased predation is not necessarily optimal, because the migration may lead
to even worse predation along the migratory route, or in the estuary or ocean. The problem
can be viewed along a time continuum, where at each moment, a fish makes the decision

to remain in freshwater, or begin its seaward migration. The point at which migration
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optimally begins is the time when the marginal benefit of delaying migration outweighs

the marginal costs (FIGURE 1.3).

Marginal
benefit

Fithess

Marginal
cost

t*
Time of migration

FIGURE 1.3 The optimal age at migration occurs when the marginal immediate costs
equal the marginal future profits. Migration prior to the optimal time, though it brings
higher pre-migratory survival, brings with it a low future profit due to high migration
and ocean mortality. Migration after the optimal time, though it brings lower migration
and ocean mortality, brings higher pre-migratory mortality and lower fecundity
(presumably because of forgone ocean growth).

Similar approaches have been used to predict habitat shifts of bluegill (Gilliam, 1982;
Werner & Gilliam, 1984). In fact, prediction of migration timing amounts to a habitat shift
problem. Gilliam’s (1982), chief result is that given the choice of two habéags (
freshwater and ocean habitats), with growth and mortality rafeg, , g.,apd
respectively, a juvenile optimally chooses the habitat of maximm (FIGURE 1.4).

This “rule” or result, however, assumes that growth rates and mortalitydates
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depend explicitly on timend so must be used with caution. Although the Bohlin model
does not predict the same “rule,” it gives consistent qualitative results: all else being equal,
the largerg, , the longer a juvenile should wait before making a transition from freshwater

to saltwater, and the highgr, , the earlier a juvenile should migrate.

Fitness curve

freshwater

Fitness

—
*

Time
FIGURE 1.4 Fitness and the ratio of growth rate to mortality rate for the freshwater
and ocean environments (here it is assumed that migration mortality is incorporated
into the ocean mortality functiorj.is the time when a habitat shift from freshwater to
the ocean maximizes fitness. Notice that it corresponds to the point where the
freshwater and ocean ratios of growth rate to mortality rate intersect. This graph is

based on the approach of Gilliam (1982).

Can the three models (Mangel, Bohlin and Gilliam) be used to explore the yearly,
seasonal, and daily patterns of migration? Each has its advantages and disadvantages

(TABLE 1.2). Since Gilliam is not time-explicit, it is questionable whether it can address
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any of the questions adequately, since seasonal temperature is known to strongly influence
patterns of growth and mortality. Let us assume that when considering yearly averages of
growth and survival, it can be used to predict year of migration. Then all three can predict
year of migration, only Bohlin can predict within-year migration timing, and none are

appropriate for predicting daily migration pattern.

TABLE 1.2 Model descriptions.

Time explicit

Migration Fitness State growth and
Model Time Horizon  Timing Criterion Variable(s) survival?
Bohlin fixed, 1 year Continuous Weight at end Weight yes

of year

Mangel freé Discrete Expected Weight or yes

(specific time  Reproduction Length

of year)
Gilliam infinite Continuous Expected Weight (size) No

Reproduction

a“free” indicates that the final time is free to be varied in the optimization.

How well do these models predict the relationship between migration timing and latitude?
The Bohlin and Gilliam models predict that delayed migration of northern chinook stocks
is not a result of freshwater growth alone. They predict that poorer growth in the north
should result in earlier migration of northern populations! They also predict that delayed
migration in the north can only be a result of (i) poorer ocean or migration survival for
northern juveniles, (ii) poorer pre-migration survival of southern stocks, or (iii) better
marine growth for southern populations. Of the three possibilities, (iii) is unlikely, while

(i) and (ii) are plausible. Note that these hypotheses are not mutually exclusive, and all can

act together to shape behavior.
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Mangel (1994) showed, in his analysis of young atlantic salmon migration timing, that
increasing “food utilization efficiency,” a scaling factor of both ocean and freshwater
growth rates, could lead to earlier migration. However, more model runs are required to
determine how freshwater and ocean survival and growth, varied independently, influence
migration timing, and if it can predict the observed relationship between migration timing

and latitude.

Do the models predict that of the chinook stocks located on the Columbia or Fraser River,
coastal populations migrate prior to inland populations? Assuming that size specific ocean
growth and survival are the same for upstream and downstream populations, the Bohlin
and Gilliam models could agree with the migration pattern if (i) size-specific migration
survival is poorer for upriver populations, or (ii) size-specific pre-migration survival is
better for upriver populations. Both of these scenarios are plausible, and (i) is especially
likely considering that upstream salmon probably encounter a greater number of
freshwater predators during their seaward migration. Considering the importance of (i)
and (ii), there is a need to show how freshwater survival changes explicitly as a function of
migration distance and its correlated variables such as current velocity, temperature, and

predation. Unfortunately, none of the three models treat migration distance explicitly.

1.3.2 Current velocity selection models

The problem of current velocity selection can also be approached through optimization
modeling, as one of optimal microhabitat selection. The most promising models consider
not only growth (Fausch 1984), where the usual approach is to maximize rate of energy

gain, but also survival (Gilliam 1982; Clark & Levy 1988; Leonardsson, 1991). A given
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current velocity choice may be profitable for feeding, but may also be more dangerous.
The degree of profit or danger depends on the size of the individual (Werner & Hall, 1988;
Bugert & Bjornn, 1991; Bugesdt al, 1991). Gilliam’s model once again is applicable to
stream velocity selection, if we partition the river cross-section into regions of differing
stream velocities, so that a finite number of mutually exclusive regions are defined, each
having an average current velocity. Typically midstream habitats will have higher current

velocity than habitats near shore.

How well can existing models predict the movement of salmon in to faster currents as they
grow? Let us first assume that the most profitable stream positions, those maximizing
potential growth, are associated with faster currents, and the “safest” regions are in
nearshore areas, associated with slower currents. Then smaller juveniles, being more
vulnerable to predators would likely forego the more profitable growth positions in favor
of cover nearshore. As they grow, predation risk diminishes, and the juvenile can move
into faster, more profitable currents. Gilliam’s model could predict such a shift since it is

based on maximizing/p (FIGURE 1.5).
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91 slower current
Hq

% faster current
H,

WS
Weight

FIGURE 1.5 Fitness and the ratio of growth rate to mortality rate for the slow current
and swift current habitatss is the size at which a habitat shift from slower to faster
currents maximizes fitness.

1.4 Research questions and problems

The literature abounds with observations and patterns concerning the early life history of
chinook salmon. Observations show latitude and migration distance patterns of migration
timing, and seasonal and diurnal patterns as well. Now that much data on the early life
history of chinook has been tabulated and general patterns recognized, the time is ripe to
ask the question, “What accounts for these patterns?” This question brings us to the realm
of behavioral ecology. | will strive to view the question in two ways: “What survival or
reproductive benefit does the behavior hold” (the adaptationist’s question); “What
mechanism accounts for the behavior.” (the mechanist’s question). The bulk of this work
focuses on the adaptationist’s question, and in the case of migrating salmon, is less studied

than mechanisms.
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The approach | take is to derive migration behaviors based on maximizing a measure of
lifetime salmon fitness, and compare these simulated behaviors to actual observations.
These behaviors are derived independently from the known behavioral mechanisms
(smolting and ontogenetic switch from positive rheotaxis to negative rheotaxis), but are
later compared to the known mechanism induced migration behavior. My hope is that the
behaviors produced by the selective pressures acting in the fithess optimization, match the
behaviors produced by known mechanisms, giving an independent understanding of
behavior that is lacking. This more general approach—Ilooking at behavior from more than
one point of view—was advocated by Tinbergen (1963). In reality, however, it is only
through the physiology of the salmon and the mechanisms of behavior, that salmon could
achieve the optimal solutions predicted by the fithess model. Therefore, ultimately, the
survival and reproductive value of behavior must be considered together with mechanisms

to fully understand why salmon behave as they do.

Specifically, | will address the following behavioral questions:

1. What accounts for the relationship between early life history type and latitude? (i.e.
why are ocean-type chinook associated with lower latitudes (the Oregon coast and Cal-

ifornia), and the stream-type chinook with higher latitudes (greater tli&h) %6

2. In rivers where both ocean- and stream-type chinook are present (i.e the Fraser R. and
the Columbia R.), why do ocean-type typically inhabit the lower reaches, while stream-

type inhabit the upper reaches?

3. Why do chinook salmon typically begin their seaward migration between the months of

February and May?

4. Why do chinook juveniles migrate mostly at night?
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5. Why do juveniles typically move from regions of slower to swifter stream currents as

they grow?

Chapters 2 and 3 address questions (1) and (2), and static optimization models are
constructed to account for selective pressures that shape migration timing. Sensitivity
analyses are preformed to observe how migration timing varies with both freshwater
“growth opportunity” (related to latitude), and migration distance. Other model

parameters are varied to examine whether the models yield sensible results.

Chapter 4 introduces seasonality into an model. Seasonality is shown to affect both the
time of year and year of migration. Hence life history type (ocean- or stream-type) may be
influenced by seasonal fluctuations of temperature and its related variables: growth

opportunity, predation, and stream velocity.

In Chapter 5, | develop an optimal control model that is able to address both seasonal and
diurnal migration timing, (3) and (4), as well stream velocity selection, (5). This model
treats swimming velocity and current velocity as control variables (also known as decision
variables). The sum of these variables gives migration velocity. The advantage of this
model over the previous models, is that migration and feeding decisions are made on a

continuous basis, and—in this respect—is more realistic.

Chapter 6 outlines the model analysis, and gives the basic mathematical results along with
their biological interpretation. The importance of the “switching functions” is discussed,
and is described in terms of the marginal increase in fitness with respect to displacement.

Two important behaviors are identified that comprise an optimal migration strategy, and
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fall into the categories of (a) predator avoidance and feeding, and (b) active migration.

These results are quite general.

In Chapter 7, fluctuations in light intensity and current velocity are considered. Their
influence on the optimal migration strategy is quantified by comparison to a simplified,
autonomous (time does not enter the differential equations explicitly) version of the

dynamic optimization model.

Appendix D contains outlines of the algorithms used to construct numerical solutions to
the dynamic optimization model. The other appendices contain detailed information on

model analysis | deemed too technical to be included in the main text.



CHAPTER 2 AHEURISTIC MODEL OF AGE
AT MIGRATION

A heuristic model of optimal age at migration developed in this chapter includes

numerous simplifying assumptions, but strives for general biological insight. The
advantage of such assumptions is that parameter sensitivity can be obtained over an entire
parameter range without resorting to numerical schemes. Also, the resulting optimization
problem will be straightforward: static and one dimensional. However, the disadvantages
can be many, depending on the specific question asked, and it is possible to “get the right
answer for the wrong reason.” The more complex models developed in later chapters are

designed to expose some of these errors.

Why use a simple heuristic model, when a more complex one may better capture reality?
One reason is that the results of complex models can be difficult to interpret. The heuristic
model is developed to build intuition about the survival and reproductive tradeoffs
associated with several habitat variables including stream velocity, migration distance,
temperature, and growth. The more complex models of later chapters do not reveal their
secrets easily—even though general relationships may exist, they are difficult to uncover.
A simple model may offer insight into these more complex and mathematically
cumbersome models. Where the complex models appear to give a “counter-intuitive”

result, a heuristic model may show that the result follows from basic assumptions.
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2.1 Model Development
The model contains parameters and state variables included to address questions about
latitude and migration distance gradients in age at migration. It consists of two state
eqguations, governing the change in weight and migration distance; a control or “decision”
parameter—age at seaward migration; and a fithess measure—expected reproduction. For
simplicity, | assume that a juvenile has a very straightforward migration strategy: (i)
initially it holds station, swimming against the river current; (ii) at some unspecified time,
known as the age at migration or the “switching timg,” , the juvenile migrates seaward
in an average river velocity , and with average swimming veloeity, ; (iii) the fish
matures and returns to spawn at a fixed tipe, . One important feature of this model is
that migration distance enters explicitly, and it will therefore be possible to predict
changes in optimal age as a function migration distances. Also, depredation is size-
dependent and the benefits of delayed migration (increased migration survival) and the

benefit of earlier migration (increased ocean growth) are both present.
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TABLE 2.1 Assumptions of the heuristic model.

Assumption
Both ocean and freshwater growth are exponential
Temporal fluctuations of the environmental variables temperature, current

velocity, predator density and search velocity, food abundance are
ignored

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight. A
predator’s likelihood of capturing a juvenile decreases with increasing
juvenile weight

Freshwater mortality is a result of depredation alone

TABLE 2.2 Heuristic model summary.

t,ta’/z tg
Maximize: Iy == (X +) Ok (W) dt - [ mdt+log (w(ty))
tm t, t,+a/z

Subject to: )-(:{o if  Ost<t,
z f t=t

Urw jf Ost<t +a/z
w=10 .
Orow if  t +a/zst<t

O<t, <t—a/z
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TABLE 2.3 Heuristic model variables and functions.

variable or variable or
function definition function definition
t time t, age at migration
I freshwater growth rate t spawning time
a migration distance J(t,) objective function
0 predator density w (1) weight
M ocean mortality rate ~ x(t) downstream displacement
4 predator search velocityk (w) capture probability
z migration velocity S (1) freshwater survival probability
o ocean growth rate S, (1) ocean survival probability
R(t,) expected fecundity
2.1.1 Growth

In freshwater and in the ocean, growth is exponential with paranigtersr  and
respectively. Although exponential growth is unrealistic, the growth functions are
mathematically convenient, each utilizing a single parameter only. Since growth is much

greater in the ocean, | assume thatr. . The freshwater growth equation is

W = r.w with solutionw (t) = wyexp( rt) , wherd<t<t (2.1)

m 1
and the ocean growth equation is

W = r w with solutionw (t) = wyexp( rt)exp(rt) , whereg <t<t, . (2.2)
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2.1.2 Survival
Freshwater survival is based on predator encounter rate and capture probability. The
predator encounter rate is a product of predator deBsity, , and the sum of migration

velocity, x, and predator search velociy,

predator encounter rate (x+ () 6. (2.3)

| assume that during station holding= 0 , and during migratien z , Where is the

sum of swimming and current velocity, hereafter called the migration velocity.

The capture probabilit,k (w) , is assumed to decrease with weighg§ the juvenile
grows it becomes less susceptible to predators). Assuming that the probability of death

due to predation in a time interval of lendth s
Pr{death inAt} = (z+) 6k (w) At, (2.4)

the probability that the fish is alive at tihe , during freshwater residence, is
O t O
S(t) = expD—‘([( z+ () Bk (w) dtD' (2.5)

Assuming a constant ocean mortality rate, , ocean survival is given by

o 5 0

s, (9 =expg— [ (z+z)ek(w)dtgexpg [ wts wheret>t,+2 . (26)
0 Ot +arz U

tyta/z

Although ocean mortality rate is known to vary with size, this relationship is ignored.

Fortunately, the selective pressure for larger size at migration is still present in the capture
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probability function, which can be modified to include early ocean mortality. Since
freshwater depredation is most severe during migration, it may be optimal to delay

migration until the juvenile is sufficiently large to escape high predation risk.

2.1.3 Fitness measure

The fitness measure is expected reproducBor, | Cm , Where is the probability of
survival from emergence to spawning, and is the number of eggs produced by a female,
assumed to be directly proportional to spawning weigft,) . Expected reproduction

may therefore be written as
R(t) = sf(tm+i;‘) S, (tgw(t). 2.7)

Although the scalar multiplier of spawning weight that yields the egg number has been

ignored in (2.7), the optimal age at migration is unaltered by its absence.

2.1.4 Objective function
It is easier to work with the log of expected reproductive success than expected

reproductive success itself,

ty t,ta/z
J(t,) :—IZGk(W)dt— J’ (z+ Q) Bk (w) dt (freshwater)  (2.8)
0 i
tS
- I pdt (ocean)

tyta/z
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+log (w,) + Ftm* 1o (tg—t,— g) , (fecundity)
whereJ is the objective function. The goal is to maximize this objective function with

respect to the age at migratidp,

2.2 Necessary conditions

In the usual way, | approach the optimization problem by finding first and second order
necessary conditions satisfied by an optimum. There are three possibilities for an optimal
age at migrationt * : either it lies at one of the pdints t.or , or it lies somewhere
between these points. In the latter case, the condidd(s,*) /dt,, = 0 , and

d2J (t,*) /dtm2 < 0 must hold, where

dd/dt, = - (z+) 0 O[k(w(t, +a/2)) —k(w(t))] —ZOK(W(t)) +p+r,—r,

, (2.9)
andd?/ dt,” = zrw (t,) Ok, (W (1)) = (2+2) rw (8, + ) Bk, (W (8, + 2)) .(2.10)

Although much can be said about these equations without specifying an explicit form of
the capture probability function (See “More general sensitivity results” on page 51), it is
instructive to present two examples, incorporating different funckigmg , and explore
their salient, and potentially different features. The analysis will proceed by identifying
the optimal age at migration as a function of model parameters, then varying the
parameters to gauge the “sign” of their effect. The “sign” of an effect is deemed positive if

increasing the parameter produces an increase in age at migration, and negative otherwise.
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Of particular interest are the effects produced by varying the distance traveled to the ocean
and the freshwater growth rate. Do the parameter sensitivities qualitatively match the
observed patterns of geographical distribution (i.e. younger age at migration for shorter
migration distances, and delayed migration for slower growing fish)? The results must be
interpreted cautiously, since the sensitivities conducted do not generally consider
covariation among the parameters. The sensitivities are conducted by varying one

parameter, while holding the rest constant.

2.2.1 Example 1
In the first example | assume that the capture probability function is inverse to weight,
kK(w) = vlv and that the initial weight i w, = 1 . The second order necessary

condition is
P/ di,? = 20w (1) (~W 2 () = (2+2) Braw (i, +2) (~W 2 (4, + 2)) s (2.11)

—r:a/

It It =t —-r.a/
= -z0re i (z+Q)0re me " =0re M[-z+ (z+{)e " ] <0.

The second derivative of the objective function is therefore nonpositive only when

@z
-Z

(z+Q)e <0.
The first order necessary condition is
0 —-ar/z
dy/di, = — ((z+0) (1-e77%) -0 + (u+ri-1,) =0,
w

yielding an optimal weight at migration of
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- (z+Q)e " 0

w* = exp(rt*) = GDD —p-r, O (2.12)

In this case, the spawning time parameter, has no influence on the optimal migration
timing. This peculiarity will also be found in “More general sensitivity results” on

page 51, and is an artifact of the exponential growth functions and assumed concavity of
fitness function (with respect tg, ). Notice that, by (2.12), except for the freshwater
growth parameter, if increasing a parameter produces a positive (negative) effect on
optimal weight at migratiomv* , then it will also have a positive (negative) effect on
optimal age at migration. | use the results frequently in the sensitivity analyses (TABLE

2.4).

TABLE 2.4 Parameter effects (example 1).

parameter effec
freshwater growth rate, +or -
migration distancea +
predator density +
ocean mortality ratqy +
predator search velocity, -
migration velocity,z +or -

ocean growth rate,, -

a1t is possible that the effect of the given parameter is 0
or has the indicated sign.

2.2.1.1 Effect of migration distance
By examining the first and second derivative of the objective function, | deduce that
increasinga favors a delayed outmigration. Wiaen is less than

a=-(z r)log (z/ (z+ () ) , the fitness function decreases with outmigration timing,
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and the optimal choice is immediate migration. When the migration distance e&aceeds |,
the second derivative of the objective function is negative, and immediate migration is
favored whenever

_ Z ez_(ro_u_rf)
as aCI’it - _alog( 9 D(Z"‘Z)

). (Where@z>r —p—r;); (2.13)

otherwise, delayed migration is favored. Note that wben  is only slightly larger than

ro—H—r; (relative to(z+ ) 6 ), thera

it 1S large, and the optimal strategy for all

realistic values o& is immediate outmigration. Wi  is much greater than
(ro—u—ry) (relative to(z+ () 6 ), then immediate migration is favored only for short

migration distances.

The critical migration distance increases with ocean growth rate and predator search
velocity; and it decreases with predator density, ocean mortality and freshwater growth
rate. The influence of migration velocity on the critical migration distance is more difficult

to determine.

As a gets larger, the optimal migration timitng reaches a limit, namely

lim t_* = (rlf) |og[ez_rf] (2.14)

a-— o I’O—I,l

The effect of varying the migration distance is summarized below (FIGURE 2.1):
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» For migration distances smaller that a critical distaagg, , Selection favors
immediate migration. This critical distance increases with ocean growth rate and

predator search velocity, and decreases with predator density, ocean mortality and

freshwater growth rate.

» As migration distance increases above the critical distance, delayed migration is
favored, and migration timing increases with migration distance. As migration distance

becomes large, the optimal migration timing approacﬁ%lsg [6zO(r,—p—ry) '1]

1472 R OO

optimal migration timingt, *

o
I

4crit  migration distancea

FIGURE 2.1 Optimal migration timing is an increasing function of migration
distance. For short migration distances @), outmigration is immediate. As
migration distance increases, optimal migration timing approaches a maximum.
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2.2.1.2 Effect of migration velocity

Migration velocity has a more complicated effect. Increasing the velocity does not reduce

the number of encounters due to the juvenile’s movementldasdecrease the number
of encounters due to active predator searching. To gauge how this effects migration

timing, | examine the marginal change in migration timing with respect to migration

velocity:
M ilm” 9 _ z+Q)ar 1t *

dy o AW 8 - [ _gawvznzroarn f+1DJe . (2.15)

dz dz r; (ro—Hu-ry) O A o ry
| am interested in values af that make the numerator z'emv\(hered%tm* =0 ). This
occurs where

ZZ 0 earf/z_ 1
( = ( ) -z (2.16)

arg

A plot of (2.16) shows that there are two possibilities: (a) when predator search velocity is

less than or equal @r;/2 , an increase in migration velocity produces later migration; (b)

otherwise, there is a critical migration velocity below which an increase in migration
velocity produces later migration, and above which an increase in migration velocity

produces earlier migration (FIGURE 2.2).
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predator search velocity,

N

migration velocity,z

FIGURE 2.2 For predator search velocities less thaf?, an increase in migration
velocity results in later migration. When predator search velocities eacé&gdhere

is a critical migration velocity, below which increasing migration velocity results in
later migration, and a above which, increasing migration velocity results in earlier
migration. When predator search velocity and migration velocity fall above the dashed
curve to the upper right, migration is immediate.

2.2.1.3 Effect of freshwater growth

The influence of freshwater growth is also more complex than that of migration distance.
Migration timing may either increase or decrease with freshwater growth, depending on
the values of the parameters. | strive to partition the parameter space into regions where

migration time increases, decreases, and shows no effect.

For sufficiently small values af , the objective function has negative slope over all points

t.,2 0, and therefore, immediate outmigration is optimal.
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As 1 increases beyond a critical valye, , migration is delayed. This critical growth rate

satisfies the equation

-ar.../z
Z-(z+Qe 0O
GDD (2+0) 0= 1, (2.17)
Fo =K~ Terit
guaranteed to have a positive solution whenéder p —r (this is true since | assumed

thatr,—pu-r;>0,08and{ are both positive).

The critical freshwater growth rate increases with ocean growth rate and predator search
velocity, and decreases with ocean mortality rate and migration distance. The influences of

predator density and migration velocity are more difficult to determine.

The derivative ot * with respect to  is given below.

(rg-p-r) (z+0) e o/ z+ - (z+ e "*

(ro-p-r9)°

exp( rt,*) (rfcfjrftm* +t,*) =6

d. s - ot L0mH-ra/z=1] 2+ Qe vz 1
f (ro—H—r0)7r; f

Setting this quantity equal to zero, and solvingffor produces

0 [(rg—p-r)a/z-1] (z+0)e "+ 20 ro—K—r
6= eXpDrf —ary/z DD —ary/z
O (ro=Hm-r) (z=(z+Qe ") 0O z=(z+{)e

The function on the right of the above equation (viewed as a functign of ) has two

vertical asymptotes: one gt = (-z/a)log[z/ (z+ ()] and the othet at r -
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As the freshwater growth; , decreases toward/ a) log [z/ (z+ () ] , the R.H.S. of
(2.19) approaches» , and whgn increases towardl , it also appreaches
(FIGURE 2.3).

predator densityd

o

freshwater growth rate,

FIGURE 2.3 The curve above represents the values of predator density and freshwater
growth rate that give zero marginal change of age at migration with respect to
freshwater growth. Large values of predator density (above the curve) give a negative
marginal change, small values (below the curve), a positive marginal change.

The results of this analysis are summarized in the three observations below (FIGURE 2.4):

* When freshwater growth rate is small, immediate migration is favored, because
remaining in freshwater at a small size leads to higher mortality, and the fish must
forego some ocean growth. Increasing the freshwater growth rate at this low level

exerts greater pressure to take advantage of growing before enduring predation during

migration; thereforedt * /dr;>0 .
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* When freshwater growth rate is sufficiently large (close to ocean growth satan
mortality rate), there is little or no advantage of migrating to the ocean, and lifetime
freshwater residence is best. Increasing the freshwater growth rate at this high level

exters greater pressure to stay in freshwater, therefgge/dr, >0

» For intermediate values of freshwater growth rate, neither immediate migration or
lifetime freshwater residence is favored. The fish leave earlier to take advantage of a
longer ocean growth period, and leave at a larger weight (meaning better freshwater
survival). Increasing freshwater growth rate from this intermediate value favors earlier

outmigration.
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optimal migration timingt,*

r!
¢t freshwater growth rate, 0

FIGURE 2.4 Optimal migration timing as a function of freshwater growth rate. For
small freshwater growth rates (less tigg), immediate migration is favored. When
freshwater growth rate approachigs L, a lifetime freshwater residence strategy is
favored. For intermediate freshwater growth rates, an increase in freshwater growth
leads to earlier migration.
2.2.1.4 Effect of temperature
Knowing the effect of temperature hinges on knowing the relationship between the
temperature and the model parameters, and the relationship between these temperature-
influenced parameters and optimal age at migration. Freshwater temperature influences
the freshwater growth rate and the predator search velocity, and can have a strong effect
on the optimal migration timing. When food is scarce, increasing temperatures lead to a

decrease in growth rate due to high metabolic costs, that the fish is unable to offset with a

higher consumption rate. In a food rich environment, however, increasing temperatures
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may lead to a higher consumption rate that surpasses the metabolic costs, leading to a
higher growth rate. When the temperature is too high, it is lethal. Increasing the freshwater
temperature increases the predator search velocity, which in turn favors an earlier
migration (TABLE 2.4). Based on these two parameters, freshwater growth and predator
search velocity, it is clear that the sign of the effect of temperature can be either positive or
negative depending on thevel of these parameters, and whether an increase in
temperature leads to an increase or decrease in freshwater growth (FIGURE 2.5). Other
factors influenced by temperature include migration velocity (a function of swimming
performance and current velocity) and predator density, and these must be included for a

comprehensive treatment of the influence of temperature.
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predator search velocity,

freshwater growth rate,

FIGURE 2.5 Isoclines of optimal age at migration. Below the dashed curve, age at
migration declines with increasing freshwater growth rate; above the dashed curve, it
increases. An increase in temperature produces a change in freshwater groh rate,
in predator search velocitf > 0, and hence in migration timidg, *. At,* <0
whenevelAl is large enough relative fir;. At *< 0 is guaranteed whenever

(At,* /dry) Ar;< O (see A and B above, the arrows represent the véatpAl)).

2.2.1.5 The effects of other parameters

The only parameters that do not show a monotonic effect on migration timing are
freshwater growth rate and migration velocity. An increase in predator search velocity or
an increase ocean growth rate make earlier migration more favorable. The former makes a

longer freshwater residence time more costly due to decreased freshwater survival, and the
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latter makes the ocean more attractive. Increasing migration distance, predator density,

ocean mortality rate, makes a delayed (not immediate) outmigration optimal.

2.2.2 Example 2

It is not clear how robust the above sensitivity results are with respect to the choice of
capture probability function. To examine robustness, | select a different capture
probability function, and see how the sensitivity results compare with the first example
(TABLE 2.5). This process, although it does not represent an exhaustive treatment, can
offer some insight, especially in the case where the resulting sensitivities differ from the
previous. For this second example, only the capture probability function will change—all
other model characteristics will remain the same (see TABLE 2.1 & TABLE 2.2).
Sensitivity analysis for a wider class of capture probability functions will be explored in

the next paragraph (See “More general sensitivity results” on page 51).

TABLE 2.5 Parameter effects (example 2).

parameter effec
freshwater growth rate, +or-
migration distancea +
predator density +
ocean mortality ratgy +

predator search velocity, -
migration velocity,z -
ocean growth rate,, -
spawning timet, -

aIn all cases, it is possible for the effect to be 0, or to
have the given sign.
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Letk(w) = -log(w), and assume *<w<1 |, so that the function remains bet@een
andl as a true probability. The second derivative evaluated at this capture probability

function is
d?3/dt,? = - z0r + (z+Q) Or; = Z6r,, (2.20)

demonstrating that is a linear function of age at migration. This leaves three possibilities

for an optimal strategy, depending on the slope of the line:
) Immediate migrationt * = 0 , if the slope is negative,

(i) Lifetime freshwater residency,* = t, , if the slope is positive,

(i) Migration at ny age 0 ant, , if the slope is zero.

| proceed by building an indicator function whose sign determines the optimal migration
timing, namelyAJ = J(t) —J(0) . When the indicator functioh) , is positive, then

t.* = t,, whenitis negative, then* =0

t

AJ = J(t) -J(0) = IZGIog (w(t))dt+log (wp) +rtg (2.21)
0

a’z
{J’ (z+{)Blog(w(t))dt— (t,—a/2 u+log(wy) +ra/z+r (t;—a/2)
0

2

retg O r
= 02 Cdog (wp) te+ 5 - (2+2) 8 (log (wp) 2+ 1 (2

2
)+ (= 2) (=)

Assuming thatv, = e , we obtain
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ot O, fa? a a
f f
A= 05—t Pl- (5 (5) —2) @+ 8+ (t,-2) (+p-ry). (222
To insure thak (w) =0 , | stipulate that

-log (e'lerfts) =1-rt,20. (2.23)

| also must assume that the duration of the ocean-ward migration is less than or equal to

the life-span of the fish.e.,

IN
~+

(2.24)

NI ©

2.2.2.1 Effect of migration distance
As in example 1, age at migration increases with migration distance. Migration distance is

allowed to vary betwee@ arigz  only, so that constraint (2.24) is satisfied.

Migration distance zerdWWhen the migration distance is zero, the indicator function is

2
[Tt U
Al _g = DTS _tS[pZ i O(re+ =),

a parabola i, which is negative betwders 0 and t' , and positiwtg *dt :

where

¢ = [1+ (ro_e‘;_rf)ﬁ (2.25)



42
Using (2.23), and the assumption that ocean growth rate exceeds the sum of the ocean
mortality and freshwater growth rateg(, (r,—p —r;) >0), the spawning time is
guaranteed to lie between O ahd , and therefore the indicator function is negative, making

immediate migration optimal.

Migration distance at maximurihena = t.z, the indicator function is

rfts
AJ| = -6z, 0(— -1) >0,

a=tz
making lifetime freshwater residence the optimal strategy.

General relationshipln general, the indicator functions defines a parabada in  that opens
downward, with its vertex at a value too greatdor to attain under constraints (2.23) and

(2.24), namely

_Z r'O_M_rf
Aertex — rf[ (z+0)0 +l]

Thus, the indicator function is monotonically increasing flom 0 , Where immediate
migration is optimal ta = t.z , where lifetime freshwater residence is optimal. For some
migration distance between these two valags, , the indicator function is zero and both

strategies are optimal (FIGURE 2.6).
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a= tSZ a= avertex

indicator functionAJ

migration distancea

FIGURE 2.6 The indicator function increases with migration distance. Migration
distance is constrained to lie between 0, wiAdre 0, andz, whereAJ > 0. For values
of the migration distance less thay,, immediate migration is optimal; otherwise,

lifetime freshwater residence is optimal. The migration distance at the vertex violates
the constraint oa.

2.2.2.2 Effect of freshwater growth

Next, | investigate the effect of freshwater growth rate. The indicator function is a linear
function of freshwater growth rate whose slope can be positive, zero, or negative
depending on the value of the parameters. | show that the effect of freshwater growth rate

on age at migration can be positive or negative, depending on the value of migration

distance.
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Null cline analysislt is helpful to examine the null cline of the indicator function, (i.e. the
values of the parameters making the indicator function zero). Notice that the indicator

function is zero whenever

_g(ro_“+(z+Z)6)+tS(9Z+(fO_U))
" (2+0)0 a2 e | -
Z+ a a s
2 P T

The numerator of the R.H.S of (2.26) is positive when 0 , is decreasing and linear in

a, and has a root at the point

280 (- )
" (to-H* (2+0) )

(which is less tham.z , as required by (2.24)).

The denominator of the R.H.S. of (2.26) is a parabola that opens downwards when
considered a function & .When= 0 ,the denominator is positive, and therefore it has
two real roots: one positive, and the other negative. The positive root is the one of interest,

since migration distance is assumed positive.

There are two possibilities: (a) the root of the denominator exceeds the root of the
numerator, or (b) it does not. In the case of (a) increasing can have a negligible effect on
migration timing or increase it (FIGURE 2.7). In the case of (b), increasing can have a

negligible effect on migration timing, or decrease it (FIGURE 2.8).
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AJ<O

AJ>0

freshwater growth rate

migration distance

FIGURE 2.7 Null cline of the indicator function when the root of the denominator
exceeds the root of the numerator in (2.26). For values of migration distance less than
a,, immediate migration is optimal, regardless;ofWhen migration distance is
betweerg, anda,, immediate migration is optimal for small valuesafand lifetime
freshwater residence is optimal for larger valuas. &hen migration distance exceeds

a,, only lifetime freshwater residence is optimal.
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freshwater growth rate

migration distance

FIGURE 2.8 Null cline of the indicator function when the root of the numerator
exceeds the root of the denominator in (2.26). When migration distance is leag than
immediate migration is optimal; when it is greater thgrlifetime freshwater

residence is optimal. In both of these cases, chamgidges not influence the optimal
strategy. However, when the migration distance is beta@ganda,, increasing;. can
change the optimal strategy from lifetime freshwater residence to immediate migration
(negative effect).

2.2.2.3 Effect of predator density
The indicator function is a linear function of predator density. When predator density is

zero, the indicator function is

A‘J‘G:O = _(ts_a/z) (ro_rf_l-l)1
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and is therefore negative since and b@th-a/ 2) (@perre— ) are assumed
positive. Only when the slope of the line definedddy  @nd is positive, is it possible for
lifetime freshwater residence to be optimal dd.>0 ); otherwise, the indicator function
iS negative over its entire range, making immediate outmigration optimal over all values

of 8. Therefore the effect @& on age at migration is either negligible or positive.

2.2.2.4 Effect of predator search velocity
The indicator function is a linear function of predator search veldcity, , with slope

| — rftg '+ a 2 a _ a. | Is a
stope= | 52 -t,-7 (%) +3j0 = (-9 | J e+ D -1

< (ts—g) [rt,-1]6<0.

Therefore, increasing the predator search velocity can only lower the indicator function,

and consequently, has a nonpositive effect on age at migration.

2.2.2.5 Effect of migration velocity
| next examine how increasing the migration veloaty, , changes the migration timing.
ConsideringAJ a function af

ot _

O
lim AJ = 05 tsDBZ +Ba+t, O(ri+pu—r,). (2.27)

Z - 00

The R.H.S. of (2.27) is a horizontal asymptoté&df  as a functian of . \WWhen achieves

its lower bound of/t, ,



_ s
A‘]‘z=a/g = —[Z—ts}ezz 0. (2.28)
To determine the slope é&f] as a functioreof |, | take the derivative:

d(ad) _ erfa2+a(r +u_r)+lefa2_eza
dz 272 2 R S &

This equation provides two important pieces of information ahdut  as a function of
(1) asz decreases to zero, the third term on the R.H.S. dominates, and the derivative is

d(AJd
positive; (2) there is only one value of satisfy'm% =0

Note also that the horizontal asymptote always lies ba&ldyy_ _, L

rels I
= (5 ~18L+ (rp+p-ry) —ab5 <0

lim AJ-AJ 5

Z—> 0 ‘Zza/g

Piecing together these results leaves two possibilities: (a) lifetime freshwater residence is
optimal for all values oz satisfying the constramg & { (FIGURE 2.9); and (k) as
increases frona/t, , the optimal strategy switches from lifetime freshwater residence to

immediate migration (FIGURE 2.10).
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migration velocity,z

FIGURE 2.9 The fitness difference as a function of migration velocity. In this case the
horizontal asymptote is positive, and the optimal strategy is lifetime freshwater
residence for all values of migration velocitysatisfyingz>a / t.



50

fitness differenceAJ

migration velocity,z

FIGURE 2.10 The fitness difference as a function of migration velocity. In this case
the horizontal asymptote is negative, and the optimal strategy is lifetime freshwater
residence for migration velocities betweeht, andz,;. If zexceedg,; , then
immediate migration is optimal.

2.2.2.6 Effect of spawning time
The graph ofAJ as a function of spawning time, , defines a parabola that opens

upwards, with its vertex at the point

(fg=Ti—H) 1
ts, vertex — Zerf + Ff (2.29)
ts vertex€Xceeds the upper bound on spawning tirﬁ]e, , since the first term on the R.H.S.

1

of (2.29) is positive, and therefofe] decreasesi‘fﬂrtss re . At the goi:ntil ,
z z

_ Ta?
AJtzi‘_ (f(i)
zZ

S

il) 8z>0,
z
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which demonstrates that for small values of spawning time, the optimal strategy is lifetime
freshwater residence. Increasing rf& can lead to two possible outcom&s: (a)
remains positive, or (b) it becomes negative. In either case, it is impossible to switch from
the lifetime freshwater residence to the immediate migration strategy by incrgasing
Therefore increasing the time of spawning can either produce no effect on age at migration

or decrease it.

2.2.2.7 Effect of other parameters

The remaining parameters ocean mortajity, , and ocean growth, , are both linearly
related to the indicator function. The indicator function increases with ocean mortality and
decreases with ocean growth. Whgn is large enaigh, Is negative, and when small,
can be either negative or positive. When increasing the ocean mortality rate, the only
possible switch in strategy is from immediate migration to lifetime freshwater residence.
Therefore age at migration increases with ocean mortality and deceases with ocean

growth.

2.2.3 More general sensitivity results
In this more general sensitivity analysis, | focus on a class of capture probability
functions,k (w) , that decrease with weight, and produce an optimal age at migration

determined by the equation

r/z

—6D(z+Z)k(vv*ea ) +0zk(w) +p+r—r, =0, (2.30)

and satisfies (2.10), i.e.
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ary/z
e

zk, (W) = (z+0) &k, (wr e <0, (2.31)

wherew* = w(t *) . This general class of capture probability functions includes the

function form example 1, but not example2. Except for the case of the freshwater growth

parametery; , if an increase in the parameter produces an increase (decngase) in , then
it also produces produces an increase (decreasg) in . | take advantage of this fact
below.

2.2.3.1 Effect of migration distance
The effect of migration distance on migration timing may be determined by examining the
derivative of the optimal migration weight with respect to migration distance.

Differentiating implicitly in (2.30),

L ar/z LIfar/z ar/z . . .
~(z+ )k, (W e )[w Je e %w }zKN(w )Ci%w =0

; (z+0) k,, (w* earf/z) [W*rzfearf/ﬂ
CTW* = ar/z, ar/z (2.32)
Tz, (W) — 2+ )k, (wre e

The numerator of the R.H.S of (2.32) is negative skyce 0 , and the denominator is
negative by (2.10), therefo%aw* , and age at migration increases with migration

distance.

2.2.3.2 Effect of ocean mortality
Next | examine how a marginal increase in the ocean mortality rate influences the

migration timing. Differentiating (2.30) implicitly,
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arf/z ary/z d

—(z+Q) 6k, (w*e " )e du eZK’V(W*)d —=w*+1 =0

-1
A gk, (we) - (2+ ) Ok, (W) €

(2.33)

arf/z) earf/z'
By (2.10), the denominator is negative, and therefore increasing the ocean mortality

increases the age at migration.

2.2.3.3 Effect of ocean growth
A richer ocean environment should lead to earlier and earlier migration, to take advantage

of increased growth, the following equation shows that this is indeed the case:

iw* : ar/z, ar/z’ (2'34)
o] QZKN(W*)_(Z+Z)ek‘N( wre | e f
By (2.10), the denominator is negative, making the derivative of the age at migration with

respect to ocean growth negative.

2.2.3.4 Effect of predator density
Increasing predator density increases the predator encounter rate in freshwater during both
station holding and migration. The encounter rate is greatest during migration, and if

predator density is large, delaying migration is the best strategy, as demonstrated below:

arf/ z

(z+ ) k(wre
Bzk, (Ww*) — (z+ () Bk, (w*e

) —zk(w+)

arf/z ar./z
e

dy+ =
de"
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Using (2.30) in the numerator,

d. . (L+ri—r,)/0
ary/z

0zk, (W*) — (z+) Bk, (w* e %) &

Therefore migration timing increases with predator density.

2.2.3.5 Effect of predator search velocity

Increasing the predator search velocity increases the predator encounter rate due to
predator movement uniformly over the juveniles freshwater residence. Delaying migration
only serves to increase the amount of time the juvenile is at risk in freshwater, and
therefore, an earlier migration is optimal, as demonstrated below:

K (W ar/z
dyx = (we ™) <0. (2.36)

dd 2k, (W*) — (z+Q) k, (W* earf/z) 212

2.2.3.6 Effects of migration velocity and freshwater growth
Migration timing does not necessarily change monotonically with either migration
velocity or freshwater growth rate as | discovered in Example 1 above. Their sensitivies

depend on the choice of parameters, and the capture probability function.

2.2.3.7 Effect of freshwater growth on size at migration
Although the sign of the effect of freshwater growth on age at migration is dependent on
the value of the model parameters (See “Effects of migration velocity and freshwater

growth” on page 54), the sign of its effectsine at migrations easily determined, and
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found to be positive. Taking the derivative of the optimal size at migration with respect to

freshwater growth yields

z+Q) 0k, (w* w e %asz-1
%W* = (2+¢) Bk, ( > 0. (2.37)
f

eZKN(W*) _ (Z+ Z) GkW(W* earf/z) earf/z

earf/ z)

This quantity is positive because the denominator is negative by (2.10), and the numerator
is negative because the capture probability function decreases with weight. Therefore

increasing freshwater growth rate increases the opsimalat migration

2.3 Summary

The results of this chapter may be summarized as follows: increasing predator search
velocity or ocean growth tends to decrease the optimal age at migration, while increasing
migration distance, predator density, or ocean mortality rate tends to increase the optimal
age at migration. Two of the model parameters, freshwater growth rate and migration
velocity can have either a positive or negative effect on age at migration, depending on the
value of the other parameters. Temperature influences both ocean and freshwater growth
rate, and mortality rates, and since the effect of these variables on age at migration may

counterbalance each other, it is not clear what its net effect is.

Except in the case of freshwater growth, the sign of a parameter’s effect on optimal weight
at migration is the same as the sign of its effect on age at migration (i.e early migration
means smaller weight). Increasing freshwater growth increases optimal size at migration,

but may at the same timdgcreaseptimal age at migration.
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2.4 Discussion
What insight has been gleaned from this endeavor? One lesson is that some variable’s
influence, (i. e. migration distance, predator density, ocean mortality rate, ocean growth
rate, predator search velocity), on age at migration is easily understood, while others are
not (migration velocity and freshwater growth). Assuming the model correctly identifies
the inherent tradeoffs associated with these variables, variables whose influence in not
easily understood are connected to selective pressures that, in combination, both reward
and punish early migration. For example, increasing freshwater growth diminishes the
cost of early migration, providing an opportunity to begin ocean feeding sooner and with
less cost during migration. On the other hand, delaying migration confers a survival
advantage to the juvenile by decreasing migration mortality. These benefits are in
competition with one another, tugging age at migration in opposite directions, and

depending on the other parameters, either side can win the tug-o-war.

The model does predict an increase in age at migration with migration distance (assuming
all else is equal), but its predictions on latitudinal gradient are less clear. Assuming the
hypotheticalrelationships between latitude and the parameters in TABLE 2.6, there are
influences of increasing latitude that favor earlier migration with respect to some
parameters (predator density and ocean growth rate), and later migration with respect to
others (ocean mortality rate and predator search velocity). As pointed out earlier a general
pattern of decreasing freshwater growth rate with latitude, could lead to either earlier or

later migration depending on the value of other parameters.
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TABLE 2.6 Latitude and migration timing.

Hypothetical
Influence of Corresponding
Latitude on influence on age

parameter parameter  at migration?®
freshwater growth rate, - ?
predator density - -
ocean mortality ratgy + +
predator search velocity, - +
migration velocity,z ? ?
ocean growth rate,, + -

a A question mark indicates that the sign of the influence is unknown (as predicted
by the model), or no hypothetical relationship was assumed.
The “success” of demonstrating an increase in age at migration with migration distance
must be interpreted cautiously, since it applies under the stipulation that “all else is equal.”
In reality, of course, all else is seldom equal, and the relationship between migration and
other model parameters must be understood—especially since local conditions of
temperature, food abundance, current velocity, and predation risk, for example, can

change radically with migration distance.



CHAPTER 3 MORE REALISTIC GROWTH
AND FECUNDITY
ASSUMPTIONS

In the previous chapter, | developed a heuristic model which assumed both ocean and
freshwater growth were exponential, and that fecundity was directly proportional to size.
However, in reality, growth is exponential—or at least nearly exponential—only for small
young fish and tapers off as the fish grows. Moreover, fecundity is not usually found to be
proportional to weight, but some fractional exponent of weight (Healey & Heard, 1984).
What is gained by including more realistic assumptions? Analyzing and comparing a
model that includes more realistic assumptions at this point could reveal what results from
the heuristic model hinge on unlikely assumptions. | seek to understand how the
sensitivity results derived in the last chapter hold up when confronted with more realistic

growth and fecundity assumptions.

One of the drawbacks of including these more realistic assumptions is that the
mathematics becomes more complicated. The heuristic model optimization could be
carried out, in most cases, by examining first and second derivatives of the objective
function. Unfortunately, for the objective function in this chapter, derivatives are not
obtainable, and maximization must be accomplished through numerical schemest(Press
al., 1988). The simpler model revealed parameter sensitivities easily, requiring basic

calculus only, and the influence of parameters could be readily determined over the entire
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range of the parameter space. Here, for practicality, we must settle for knowing a

parameter’s influence over some restricted range of the parameter space.

Again, as in the previous chapter, the main focus will be on the relationship between age at
migration, latitude and migration distance, although the effect of other variables will be
considered as well. The parameter estimates will be based on various literature values or
regressions on data found in the literature when possible; otherwise, reasonable values are
assigned (TABLE 3.2). The maximization scheme used is based on functional values
alone since derivative information is not available (Brent, 1973). It proceeds by fitting
successive parabolas to the objective function, until the optimal age at migration is found
to within a nominal error tolerance. Each objective function evaluation requires
simultaneous numerical integration to determine weight and fitness, these are performed

using either the fourth-order Runga-Kutta or Bulirsch-Stoer method (€tras1988).
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TABLE 3.1 Model assumptions.

Assumption?

Ocean and freshwater growth functions reflect diminishing returns

Fecundity is proportional to weight at spawning raised to a fractional
exponent

Temporal fluctuations of the environmental variables temperature, current
velocity, predator density and search velocity, food abundance are
ignored

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight. A
predator’s likelihood of capturing a juvenile decreases with increasing
juvenile weight

Freshwater mortality is a result of depredation alone

aThe first two assumptions differ from the assumptions of the previous chapter.
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TABLE 3.2 Model summary.

t,ta’/z tg
Maximize:  3(ty == [ 8G+Ok(Wdt= [ pdt+iogm(w(()]
m T, t,+ta/z

Subject to: )-(:{o if  Ost<t,

g g;(w) if Ost<t, +a/z
0 9o (W) if ot +ta/zststg

3.1 Development of more realistic relationships

3.1.1 Ocean growth

Both freshwater and ocean growth equations are assumed to follow a generalized von

Bertalanffy growth model,
w = aw® - Bw, (3.1)

where the R.H.S. represents the difference between anabolism (growth assimilation) and
catabolism (respiration). Theoretically, the expongnt assumes the2redue , however,
it is instructive to vary this quantity in the upcoming sensitivity analysis. As it varies from
2/ 3to 1, growth varies from the standard von Bertalanffy, which is limited, to
exponential, which is unlimited. Thus, the parameter represents a bridge between ocean
growth in the current chapter (limited growth), to that in the previous chapter (unlimited,

exponential growth).



62
3.1.2 Freshwater growth
The freshwater growth function | consider here includes, handling time, food density, and

metabolic costs:

ctpy (W) v
Py (w) - ca, WP/ - ca 1WBl, (3.2)

%MW = Toywhwv 2

where the first term on the R.H.S. represents rate of energy consumed, second and third
terms represent rate of energy lost to active and standard metabolism respectively (Ware
1978).p (t) represents the food density on the stream surface(and , the width of the
intersection between the reactive field cross section and stream surface. The fraction of the
ration available for work and growthts . The handling tilméw) , Is the time required

for a fish to apprehend and consume one calorie of food. The conversiondactor, ,

converts calories to grams.

One important characteristic of this growth function is that, like the von Bertalanffy
growth function, growth is limited. As a fish in freshwater grows, it consume more and
more food to offset its increased metabolic demand, otherwise its growth is very poor. The
freshwater environment is relatively poor in food compared with the ocean environment
and growth slows quickly after a boom (if food is available). Assuming the parameter
estimates of TABLE 3.2, as weight becomes large the freshwater growth function is

approximately

0.34 761 0.624
g; (W) Octpw 5\/—CC(2W076\/ — cor, W0,
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showing that the exponents of weight for the metabolic terms dominate the exponent of

weight for the anabolic term. Therefore, as weight becomes large, growth tends to zero,

(i.e., growth is limited).

TABLE 3.3 Parameters and their estimates.

Parameter or
Parameter Description Relationship Estimate Data Source

standard metabolisnfcal (s ©) a, 3.646584x 10" Brett (1965)

B, 0.6239528 Brett (1965)
active metabolism(cal (5 %) a, 3.65195% 10° Brett (1965)

B, 0.7609603 Brett (1965)

n 2.360445 Brett (1965)
oxycalorific equivalent q 3.42 cald m@l Webb (1974)

calories to grams conversion

factor

swimming speed

handling time

reaction field

food density

net food conversion efficiency
distance from redd to estuary
current speed

initial weight

capture probability

predator density

predator search velocity
ocean growth rate{g Oyr 1)
ocean mortality rate
fecundity

1.6949x 10* grcal® White & Li (1985)

v 0.6 ms* Brett (1965)

h (w) 18w %% scal® Ware (1978)

v (w) 0.00%**%/ ./t m Ware (1978)

p 1calom?

T 0.7 Brett & Groves (1979)
a 613 km

u k!

W, 3.38 g

k(W) wt

0 xm?

Z 13&n Oyr t

g (W) 25.8700”%-0.7888v  Parker & Larkin (1959)
H, (W) 316" Parker (1962)

m(w) 48.940°°%8 Healey & Heard (1984)

3.1.3 Fecundity

Studies confirm significant fecundity-size relationships within chinook populations

(Galbreath & Ridenhour 1964; Healey & Heard 1984). Theoretically, the fecundity is
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proportional to the cube of length, and using an allometric relationship, | relate fecundity

to weight through the relationship

D

m(w) = a,w" (3.3)
TABLE 3.4 Parameter sensitivity.
age at
migration heuristic

parameter parameter range range (yr.) effect model effect
freshwater food density 1 to &l Om 2 1.0to 4.5 + +%r -
freshwater swimming 1.826x 10° to 5.478x 10° 1.78 to .60 - NA
metabolism coefficienty,,
freshwater standard 1.823292x 10" to 5.469876x 10* 1.14 to .93 - NA
metabolism coefficienty
migration distancea 30 to 1500 km .06 to 2.09 + +
predator densityd .02 to 1Kn* 1.48 to 1.04 - +
ocean mortality ratgy 0.00 to 3.;16_1 1.02t0 1.35 + +
predator search velocity, 86.25 to 143Kfb Cyr 1.21t0 .90 - -
current velocityu Oto3ncs? 1.03t0 1.05 + +or-
initial weight, w, 1.69t05.09 1.15t0 .94 - NA
spawning timef, 2.5t0 7.9r 1.00to 1.05 + +

a Assuming that the effect exponential freshwater growth parameter of the previous chapter may be compared to the
freshwater food density of this chapter.

b NA indicates that no analogous parameter exists in the heuristic model, or it does exist but was not varied.
3.2 Parameter effects

3.2.1 Effect of food density
All else being equal, what effect does an increase of food density have on age at

migration? There are two competing points of view:

1. When food density is larger, freshwater habitat is more attractive due to increased

growth potential, and this should lead to delayed ocean migration.
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2. When food density is larger, a juvenile will grow faster, outgrowing its predators more
quickly. The juvenile optimally migrates earlier to take advantage of a longer ocean

growth period.

Both of these hypotheses are short-sighted, and do not consider all of the factors at play.
The first neglects the benefits of a longer ocean growth period, the second, the advantage
of migrating at a large size to avoid being eaten. However, looking at these two
hypotheses shows the countervailing selective pressures produced by a increase in food

density, and the question is, “Which force is strongest?”

In this simplified case, where there are no seasonal effects on parameters considered, the
first point of view prevails. Simply stated, the small increment in weight at spawning
produced by an earlier migration does not compensate for the corresponding decrease in
freshwater survival. It is possible to perturb parameters of the model so that hypothesis 2
wins out, but this required making the benefits of prolonged ocean growth unreasonably

high (FIGURE 3.1).
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FIGURE 3.1 Optimal migration time can be forced to decrease with food density if
the von Bertalanffy anabolism exponeptjs large enough. However, theoretically,
and in practice, this exponent lies near 2/3, where time of migration decreases with
food density.

3.2.2 Effect of migration distance

As in the case of the previous heuristic model, with exponential growth and fecundity
linear with weight, age at migration increases with migration distance. This appears to be
a robust result: when the migration corridor presents greater risk to the migrant (relative to
the risk it experiences during station holding) it should invest a greater amount of time in

growth before migrating.



67
3.2.3 Effect of predator density
Interestingly, the effect of predator density (+) is contrary to that predicted by the previous
heuristic model (-). When predator density is larger, both the predation rate during station

holding and during migration increases. There are two possible strategies for the juvenile:

1. Migration is delayed to decrease the risk during migration.

2. Migration is earlier to decrease the time at risk in freshwater, with some compensation

through a longer ocean growth period.

Under the assumptions of exponential growth strategy 1 is favored, but when more
realistic, limited growth assumptions are added, strategy 2 is favored. Under limited
growth assumptions, the benefit to migration survival given by delayed migration does not
counter balance the benefit of decreased time at risk during station holding and a
prolonged period of ocean growth. This occurs, at least in part, because a limited
freshwater growth curve does not offer the same benefit of prolonged freshwater residence

offered by exponential growth (FIGURE 3.2).
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FIGURE 3.2 The log of age at migration as a function of predator density. As the
terms leading to limited growth (metabolism, handling time) are reduced from their
estimated values to zero, through the multigliesige at migration becomes and
increasing function of predator density. This demonstrates how making the freshwater

growth function limiting rather than exponential, changes the relationship between
predator density and age at migration.

3.2.4 Effect of other parameters

The influence of freshwater growth rate (as determined by food intake, and metabolism),

migration distance, ocean mortality rate, predator search velocity, and current velocity are

all consistent with the heuristic case (TABLE 3.4).



69
3.3 Summary
Varying freshwater growth parameters reveals that as freshwater growth increases, so does
optimal age at migration. The sign of this effect reverses, however, as the influence of
limited ocean growth is decreased—becoming more exponential in nature. The effects of
migration distance, predator ocean mortality rate, predator activity, current velocity, and
spawning time are all consistent with the heuristic model. Predator density, however is
inconsistent with the heuristic model: its increase results in a decrease in age at migration.
This is patrtially, if not wholly, due to the introduction of the limiting effects of handling
time and metabolism on growth. By reducing these limiting effects, it is possible to

reverse the sign of the effect so that age at migration increases with predator density.

3.4 Discussion

Except in the case of predator density, adding more realistic growth and fecundity
assumptions did not change the signs of the parameter effects. The effect of predator
density changed from “+” in the heuristic case to “-” in the more general setting. | was
able to show that by reducing the influence of metabolic cost terms and handling time,
making freshwater growth less limited, it was possible to reverse the effect of predator
density (from - to +) on age at migration, making it consistent with the heuristic model
result (FIGURE 3.2). This was done while leaving the ocean growth and fecundity
relationships unchanged, indicating that the reverse in the effect of predator density was,
in part, if not wholly, attributable to the addition of limited freshwater growth. A simple
biological argument makes sense of this result. When predator density is increased, risk of
predation is greater in freshwater, and is most intense during the period of migration when

the predator encounter rate is highest. If a resulting delay in migration is optimal, then the
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benefit of growth during this delay had better offset the increased depredation risk during
the delay. But the more limited freshwater growth becomes, the less likely this offset will
occur, and therefore, as we discovered, the optimal age at migration actually decreases

with predator density.

A similar argument shows why reducing the effect of limiting ocean growth results in a
switch from a positive effect of freshwater growth on age at migration to a negative effect
on age at migration (FIGURE 3.1). For if an increase in freshwater growth leads to earlier
migration, then the increased ocean growth must offset the greater predation experienced
during the earlier migration. As ocean growth becomes more limited, however, this offset

becomes less likely, making age at migration increase with freshwater growth.

Although | present more realistic assumptions in this chapter, and, to some degree,
illustrate the robustness of heuristic model results, there are still many simple assumptions
present that certainly do not hold in reality, and these must be examined more closely. For
example, how does introducing the effect of seasonally varying temperature influence the
sensitivity results? By including seasonality, is the year of migration influenced as well as

the season of migration? These questions are addressed in the following chapter.



CHAPTER 4 SEASONAL EFFECTS

Until now, | have held important environmental and biological variables such as current
velocity, food availability, predator activity, and growth parameters, constant over time. In
reality, this assumption does not hold. Mean daily temperature (averaged over many
years), for example, follows a periodic function, and is known to influence growth and
predator activity. Do these temperature fluctuations influence migration timing?
Quantitative studies relating temperature and migration timing are scarce (Jonsson &
Rudd-Hansen 1985; Bohlet al, 1993b), but show clear relationships. There is good
reason that a relationship between temperature and migration timing exists, for smolt
development is controlled by the temperature related variables such as growth rate and
photoperiod, and the more developed a smolt, the more likely it will migrate (Dickhoff &
Sullivan, 1987). Other seasonally related factors such as increasing stream velocity are

also thought to promote downstream movement (Kjet¢s@t, 1982).

In this chapter, | include the influence of seasonality (TABLE 4.1), and as in previous
chapters, focus on how migration timing affects individual fitness, and calculate the
optimal age at migration based on hypothesized selective pressures. Including seasonality
changes the nature of the objective function, producing local maxima that represent
optimal within-year timing, and a global maximum that gives the optimal age at

migration. The model suggests that temperature regime changes not only the optimal

within-yearmigration timing but also, the optimgdar of migration. As in the previous
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chapters, | catalogue the effects of changing mean food availability, migration distance,

and other parameters, and then compare the results to those of previous chapters.

TABLE 4.1 Model assumptions.

Assumption

Ocean and freshwater growth functions reflect diminishing returns

Fecundity is proportional to weight at spawning raised to a fractional
exponent

Some temporal fluctuations of temperature related variables are
considered: predator activity, food abundance, metabolic processes,
food consumptioh

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight

Freshwater mortality is a result of depredation alone

8This assumption differs from that of the previous chapter, where seasonality is ignored.
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TABLE 4.2 Model summary.

t,ta’/z t
Maxlmlze: J(t) =- J’ B (t) (x+Z (1)) k(w, tydt- J‘ udt+log [m(w(1))]
" b t,+ta/z
Subjectto: ¢ _ { o if tost<t,
z f t=t

Og(wt) jf tyst<t +a/z
0% w1t if  t +a/zststg
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TABLE 4.3 Main model variables and functions.

variable or variable or

function definition function definition

t time tm age at migration

0 (w, 1) freshwater growth rate t, spawning time

a migration distance J(t,) objective function
M ocean mortality rate  w (t) weight

(b) predator search velocityx (t) downstream displacement
z migration velocity kK(w 9 capture probability
g, (W, ) ocean growth rate 0 (1) predator density
to time of emergence W, initial weight
m(w) fecundity

4.1 Model development

Model changes include a new temperature dependent growth function and predation rate,
and also a periodic mean daily temperature function. To sync the seasonal variation with
the emergence date, time 0 will correspond to the beginning of a new year, and the

emergence date is redefinedigs (TABLE 4.3).

4.1.1 Temperature dependent growth
The rates of food consumption, excretion, and metabolism are all influenced by
temperature. And to capture this influence, | use the Fish Bioenergetics 2 (bl t

& Johnson, 1992). This model is based on the balanced energy equation

Consumption = (Metabolic Loss) + (Waste Loss) + (Growth),

1. The Model 2 software package is available through the University of Wisconsin Sea Grant Institute. For
more information, contact: Communications Office, University of Wisconsin Sea Grant, 1800 University
Ave., Madison, WI 53705-4094. The software package runs only on IBM/compatibles.
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or, using variables defined later in this chapter:
C=(R+9 +(F+U) +AB.

Water temperature, fish size, energy density, and food availability are the primary factors
affecting this energy budget. The computations are based on specific rates—grams of food

per gram of predator per day.

4.1.1.1 Consumption

Consumption—the rate at which food is consumed by a fish—is determined by calculating
a maximum consumption as an allometric function of weight, then scaling it by a
parameter representing food availability and a function representing temperature

dependent feeding activity. The basic equations for calculating consumption are:

C = C . [PF (T, (4.1)

Conax = 2W™, 4.2)
whereC,,,, is the maximum specific feeding rate, is fish wei@ht, is the specific
feeding rate (consumption, is a proportionality constant, band are allometric
function parameterd is water temperature, fad) is the water temperature
dependence function. Temperature dependent functions have been developed for several
salmon species: chinook, coho, pink, and sockeye. The function is calculated using the

Thornton & Lessem (1978) algorithm.
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FIGURE 4.1 Temperature dependent food consumption functions for chinook/coho,
and pink/sockeye (Hewitt & Johnson, 1992).

4.1.1.2 Respiration and specific dynamic action

Respiration is the amount of energy used by fish for metabolism—determined by
calculating standard metabolism as an allometric function of weight, then increasing that
value through a temperature dependent function and an activity factor. Specific dynamic
action is then added to this quantity to determine the total metabolic rate. The equations

are given by

R = aw’f, (T) Cactivity (4.3)
S = SDA( G- #, (4.4)
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whereR is the specific rate of respirati@y, dnd are parameters of the allometric
relationship for standard metabolisin(T) is the water temperature dependence
function, activity is the increment for active metabolis&, is the energy lost to specific
dynamic actionSDA is the proportion of assimilated energy lost to specific dynamic

action, andr is the specific rate of egestion.

4.1.1.3 Waste losses (egestion and excretion)
Energy not available for growth and not lost in metabolism is lost through egestion (fecal

waste) and excretion (nitrogenous waste). The corresponding model equations are

F = PFLC (4.5)
U = a,T"exp(y,P) O(C-F), (4.6)
whereF is the waste lost through egesti@R, represents the fraction of consumption that
appears as fecal matter, add is the waste lost through exciefion. will change over

time as the digestibility of diet changes.

4.1.2 Temperature dependent depredation rate
Recall that predation rate is governed by the movement of juveniles and the activity of the

predators. In equation form, it is described as

6(t) (Ix(®)[+{ (1)) k(w 9,

wheref (t) is the predator densiy(t) is the migration velogi(y) is the predator
search velocity, andd (w, t) is the capture probability. Predator search velocity, capture
probability, and predator density are all functions of temperature. Until some temperature

threshold is realized, increasing temperature leads to increased predator activity (and
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hence predator search velocity and capture probability). Since capture probability scales
predator search velocity, let us assume that the influence of temperature on predation rate
is strictly through the capture probability function. To model this influence, | scale a

maximum capture probability function by a temperature dependent function,

kK(w, ) = Kpax(W) Bprea(T () . (4.7)
The temperature dependent scaling function is similar to the consumption fup€tipn
it gauges the influence of temperature on predator consumption of salmon. Using this fact,
| use the functiori, (T) , calibrated for the appropriate predator as the scaling function,

frea(T) (FIGURE 4.2).
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FIGURE 4.2 The proportion of the maximum consumption as a function of
temperature for walleyr, smallmouth bass (Hewitt & Johnson 1992), and northern
squawfish (Vigg & Burley, 1991).

4.1.3 Mean daily temperature data

Now that | have shown the importance of temperature on important biological variable, |
proceed to show how the time series of daily water temperatures, measured at a fixed
location, may be modeled. Since mean temperature patterns are periodic (with period of

one year) and are linked to photoperiod, | choose to use the standard sine function:

T(1) = L+AEBin(2ng6;_)®), (4.8)
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whereL is a mean annual temperature lef&el, is the amplitude of the sin curve, and
211@/ 365 is the phase angle. The temperature function is fit to data using nonlinear least

squares, and the fit is remarkably good for some data sets (FIGURE 4.3).

7 L = 12.32247
A = 9.697841
@ = 120.6685
20 -
)
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2
o
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day of year

FIGURE 4.3 Nonlinear least squares fit of Snake River daily average temperature data
recorded at Anatone Gage, Washington, 1975-1982 (Cemha&y 1993).

4.2 Simulation results and sensitivity

Including seasonal effects changes the nature of the fitness vs. age-at-migration curve. In
the absence of seasonal effects, the curve has one hump, and the optimal migration time
changes continuously as a function of model parameters. When seasonal effects are
present, each year contains a hump, and the top of each hump corresponds to a global or

local maximum (FIGURE 4.4). The sensitivity analysis will focus on the influence of



parameters on both the year, and the time of year that fish migrate. Most parameters have a
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large influence on the year of migration, but little on the day of year.

TABLE 4.4 Functions, parameters, and their estimates.

Parameter Description ~ Parameter Units Estimate Data or Parameter
or Source
Relationship
consumption C(t) da?t see reference (chinook) Hewitt & Johnson (1992)
respiration R(1) da?t see reference (chinook) Hewitt & Johnson (1992)
specific dynamic action  S(9 da?t see reference (chinook) Hewitt & Johnson (1992)
egestion E(t) da?t see reference (chinook) Hewitt & Johnson (1992)
excretion U (1) da?t see reference (chinook) Hewitt & Johnson (1992)
proportion of maximum forea(T) see reference (walleye)  Hewitt & Johnson (1992)
capture probability
amplitude of temperature A C 9.697841 Connoret al.(1993%
function
mean level of temperatureL C 12.32247 Connoret al (1993)
function
phase angle parameter of @ d 120.6685 Connoret al (1993)
temperature function
swimming speed v m/s 0.6 Brett (1965)
distance from redd to a km 200
estuary
current speed u m/s 1
initial weight W, g 3.38
maximum capture Kmax(W) none w'
probability
predator density 0 km ™t 1.5
predator search velocity ¢ kmOyrt 115
ocean growth rate g, (w) Eyr_l 25.870v*> - 0.7888v Parker & Larkin (1959)
ocean mortality rate Ho (W) yr'1 316 Parker (1962)
fecundity m(w) eggs 48.940°°%8 Healey & Heard (1984)
spawning time t, yr 5.0
emergence date ty yr 1/6 (March 1)

aThe temperature function parameters where estimating using nonlinear regression on data contained in the indicated

report.
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FIGURE 4.4 Comparison of log fitness vs. age-at-migration curves when temperature
Is constant and when it fluctuates. Notice that in the presence of fluctuating
temperatures, the optimal migration occurs almost half a year earlier. The constant

temperature model actually produces a poor strategy—migrate during the summer
when predation is high.
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TABLE 4.5 Sensitivity results.

parameter parameter range age at  effect effect
migration (no
range (yr) seasonality)
food availability, Pvalue Oto1 .17 to 1.07 + ar
migration distancea 50 to 2000 km .17 to 4.06 + +
predator densityd 2to6.am™* 1.07t01.07 P 0 +
ocean mortality ratey 0.00to .63@1 1.07 to 1.07 0 +
predator search velocity, 86.25 to 143.K& Oyr * 1.21to .90 - -
current velocity,u Oto3mms? 1.03to 1.05 + +
initial weight, w, 1.69105.0% 1.15t0 .94 - -
spawning timef, 2.5t0 7.%r 1.00 to 1.05 + +
amplitude of temp. functioaA 7.27t012.2 1.07 to .17 - °NA
mean level of temp. functiom, 13to &7 .25t01.09 + NA
phase angle of temp. functiog, 60 to 180 .90t01.23 + NA

a Although this food availability parameter is different from the one included in the case where seasonality is
absent (previous chapter), in both cases, its increase results in greater food availability and hence greater
growth.

b An effect of 0 indicates that no change in the age at migration was observed when varying the parameter over
the given range.

¢ NA indicates that no analogous parameter exists in the model where seasonality is absent.

4.2.1 Effect of migration distance

In previous chapters | showed that increasing migration distance leads to a delay in
migration. The same is true in the presence of fluctuating temperature. However, because
the optimization problem admits several local minima, one of which may become a global
minimum by changing migration distance, the optimal age at migration does not vary
smoothly. In other words, the best time of year to migrate stays relatively fixed as
migration distance varies, but when migration distance exceeds a certain threshold,

optimal age at migration jumps discontinuously to the next year (FIGURE 4.5).
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FIGURE 4.5 Influence of migration distance on optimal age at migration. The step
function described by the curve of asterisks describes the global optimum age at
migration, while the lines represent local optimums. Notice that the optimal age at
migration leaps discontinuously between years as migration distance increases, but the
optimal time of year for migration changes little.

4.2.2 Effect of food availability

The P-value is defined as the proportion of the maximum consumption that is influenced
by food availability. As the P-value increases, so does food availability, and therefore | can
gauge the qualitative influence of an increase in food availability by increasing the
P-value. Using such a technique, | determined that an increase in food availability led to
decrease in age at migration—the same result obtained in the absence of seasonality

(TABLE 4.5).
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4.2.3 Effects of temperature function parameters
Of the three temperature function parameters, the phase angle parameter, which defines
the time of year at which temperature rises above the mean temperature, has the most
influence, and its main influence is exerted on within-year migration timing. A rule of
thumb, based on the many simulations, is that fish optimally migrate at a time when
temperatures have reached a minimum, and predation risk is diminished (FIGURE 4.6).
This time of minimum temperature is controlled by the phase angle parameter. As the
amplitude of the temperature fluctuations diminishes, this relationship begins to break
down (FIGURE 4.4). In contrast, depending on their levels, the amplitude and average
temperature parameters mainly influence year of migration, affecting within-year
migration timing to a lesser degree. Like migration distance, their influence yields a

discontinuous movement of optimal age at migration from year to year.
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FIGURE 4.6 The effect of temperature fluctuations on the log(fitness) curve. The
maxima correspond to the minima of the temperature curve. As the fish ages, the effect
of temperature is less severe, owing to its larger size, and consequently, its greater
ability to escape enemies.

4.2.4 Effect of other parameters

Largely, the remaining parameters show an influence on migration timing consistent with
the case where seasonality was ignored. The exceptions are predator density and the ocean
mortality rate which showed no effect on age at migration over their given range (TABLE

4.5). This appears to be a result of the anchoring of within-year optimal migration timing
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by the temperature curve, making specific times of the year best for migration. Rather than
producing a continuous effect on optimal migration timing, migration timing either varies
little—not at all in the case of predator density and ocean mortality (for the parameter

estimates used)—or jumps between years.

4.3 Summary

In this chapter | included temporal fluctuations in food consumption, metabolic processes,
and predator activity. The temporal fluctuations in these variables were driven by a
periodic temperature function of given average temperature, phase angle, and amplitude.
The objective function has yearly humps corresponding to the best within-year migration
timing, the tallest hump representing the global maximum. As a result, seasonal
temperature fluctuations exerted a strong influence on the age at migration, not only
determining the optimadithin-yearmigration timing, but also the optimyar of

migration. The best time of migration corresponds to times of low temperature, when
predator activity is at a minimum. As fish grow, the influence of seasonality decreases

because larger fish are less susceptible to predators.

The sign of the parameter effects were consistent with the case where seasonality was
absent. The phase angle parameter defines the time of minimum temperature, and
therefore is responsible for anchoring the optimal age at migration to a particular time of
year. Other parameters have little to no effect on within-year migration timing (TABLE
4.5), but can strongly influence the optimal year of migragog, (migration distance)

(FIGURE 4.5).



88
4.4 Discussion
The simulations show that the best time to migrate is when predator activity is at its
lowest, (.e., during winter months). Although this seems a reasonable result, it is not
usually witnessed in nature. One may argue, from a physiological standpoint, that during
the cold winter months smolt development is retarded and is hence an unlikely time to
migration. On the other hand, one ought to ask, if winter is the best time to migrate, why
do the fish not migrate to the ocean at a less developed state, and relying on smolt
development with increased exposure to saltwater, as is witnessed in some ocean-type fry
(Reimers 1973)? My point is that although one may appeal to smolt physiology for an
explanation of migratory behavior, one wonders what survival or reproductive benefit is
produced by the population-specific smolt development schedule—a schedule depending

strongly on endogenous, as well and exogenous factors.

| believe the results of this chapter raise an important queHtjoredator activity is least

during winter months, why do not all salmon populations migrate at that time? | believe
the answer depends on knowing the temporal patterns of survival, not only in freshwater,
but also in the ocean and estuary. For winter migration may eliminate some freshwater
mortality, but what about size-dependent ocean and estuary mortality? Many agree that
larger fish are better able to handle the insult of a more osmotically challenging saltwater
environment (Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves &
LeBrasseur, 1986), and that they are better able to escape predators (Werner & Hall, 1988;
Bugert & Bjornn, 1991; Bugest al, 1991). These factors ought to be incorporated in the

ocean mortality function, and could yield more realistic migration timing patterns.
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Another result of the simulations shows that, all else being equal, increasing the mean
yearly temperature, increases freshwater residency. In reality, colder climes produce
populations with greater freshwater residence times than warmer ones. Recall that
ocean-type populations predominate in the south, and stream-type, in the south. However,
the sensitivity performed on mean temperature assathether factors were equaand
certainly the other important factors vary with latitude, such as freshwater predator
abundance, and the performance demands of the ocean environment: osmo-regulator and
locomotor performance is inhibited in colder waters (Brett, 1967; Knutsson & Garv, 1976;
Beamish, 1978; Webb, 1978; Virtanen & Oikari, 1984). Another factor ignored was the
possibility of lethal temperatures. In some parts of California, a yearlong stay in certain
freshwater regions is not feasible, since summer temperature are routinely lethal in their
habitat (TABLE 4.5). | believe that including the patterns of freshwater predation,
size-dependent saltwater readiness, and lethal temperatures, would yield more realistic

latitudinal patterns.

TABLE 4.6 Lethal water temperatures in some California rivers. The estimates were
derived from USGS dath.

Gauge Station Station No. Lat. S No. days mean temp. >2fC)
1988 1989 1990 1991 1992 1993
Merced R. near Stevinson, CA 11272500 ° 37 32 -b -- 34 59 --
San Joaquin R. near Newman, CA 11274000 ° 27 55 -- -- -- -- 24
Tuolumne R. at Modetso, CA 11290000 °3B’ 91 25 - 49 - -
San Joaquin R. near Vernalis, CA 11303500 °4&Y 0 -- 70 36 57 19

Sacramento R. below Wilkins 11390500 3901' O 0 0 0 0 0
Slough near Grimes, CA

Sacramento R. at Freeport, CA 11447650 ° 3B -- 0 2 2 9 0
8| ethal temperatures are estimated at > 25.1 C (Brett, 1952).

b The symbol “--" indicates that the year contained too many missing daily temperatures for an accurate estimate.
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The parameter effects of this chapter were in qualitative agreement with those of the
previous chapter, where seasonality was ignored. As before, age at migration increased
with food availability, migration distance, current velocity, and spawning time; and
decreased with predator activity and initial weight. Of special interest are the predator
density and ocean mortality rate which showed no influence on age at migration over their
chosen range. This is an artifact of added seasonality. The only parameter with a strong
influence on with-year migration timing is the phase angle: all other parameters show their
main influence on between-year age at migration (see for example FIGURE 4.5). This
suggests the possibility of carrying out the optimization in two phases: (i) determine the
optimal with-year migration timing, then (ii) given this best time of the year to migrate,
what year should the migration take place. The first phase can be accomplished using a
continuous variable (time of the year), and second with a discrete, “yes or no” variable:
should the fish migrate this year or not? The continuous approach of the first phase was the
approach of Bohlirt al. (1993), while the discrete approach of the second phase as used

by Mangel (1994). The approach | use integrates these two phases.



CHAPTER 5 A MORE GENERAL
APPROACH: DYNAMIC
OPTIMIZATION MODELLING

The study of migratory behavior is not limited to understanding age at migration. There is
a rich complex of behaviors leading up to migration and during migration itself—
behaviors promoted by ontogeny and environmental changes. Studies show that although
there is much variation in behavior among chinook populations, some common behavior
patterns are evidelntfry initially inhabit the stream or river margin, but move into higher

velocity locations as they grow; fry migrate mostly at night; fry move with freshets.

Models of the previous chapters are not able to capture the continuous decision process
involved with these migration and feeding behaviors. The previous models assumed that
once migration began, it continued at a constant rate until estuary entry. To capture the
mosaic of behaviors considered in this chapter, the fish must be able to cease migration
during different hours of the day and migrate in different cross-sections of the river or
stream. Migration, considered at this level, involves a continuous decision process: at each
instant the fish must be able to choose its migration velocity and its proximity to shore.
The previous models presented static optimization problems involving only a single
decision {.e., when to migrate), and do not apply here. Fortunately, there exists a

modelling framework able to deal with the problem of a continuous decision process

1. See sections 1.2.3, 1.2.4, and 1.3.2 of CHAPTER 1.
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rather than a static ongynamic optimization modellin@ster & Wilson 1984; Smith

1984; Mangel & Clark 1988).

As in the case of the static optimization problem of previous chapters, behavior is viewed
as an organ shaped by natural selection into a form which optimizes the salmon’s fitness.
The assumptions underlying this class of models are that (a) each behavior allowed by the
model is phyletically feasible, and (b) the organism either possesses or can develop a
mechanism for achieving nearly optimally solutions to behavioral problems (Mangel &

Clark 1988).

The model, as it is presented in this chapter, takes its most general form, making a
minimal number of assumptions (TABLE 5.1). In later chapters, special cases will be
considered and simplifying assumptions made. Attention is given to each phase the
salmon life-cycle including freshwater, estuarine, and ocean residence (FIGURE 5.1),
although the main focus is on behavior during freshwater residence and migration. The
additional problems of identifying optimal estuarine residence time and age at maturity
are subsumed by the general form of the model, but receive no treatment in upcoming

chapters.
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FIGURE 5.1 Chinook life cycle summary. Lifetime reproductive success depends on
survival in theld freshwater[] estuarine, and ocean habitats, as well @sfecundity
and egg-to-fry survival.
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TABLE 5.1 Model assumptions.

Assumption

Ocean growth is based on a von Bertalanffy growth equation, with
parameters that are allowed to vary with time.

Estuarine growth is weight and time dependent and not locked down to a
particular form.

Freshwater growth is time, space, and size dependent. It is based on a
Holling type Il disk equations for consumption, and metabolic costs
determined by fish size and temperature.

Fecundity a function of weight at spawning.

Freshwater residence time, estuary residence time, and spawning time are
free.

Emergence time is fixed.
Ocean mortality rate decreases with weight.

Migration velocity is allowed to vary continuously as the sum of
swimming velocity and current velocity control varialfles.

Movement is one dimensional, measured in the upstream/downstream
direction.

Capture probability is a decreasing function of salmon weight, and
allowed to vary with time.

Freshwater mortality is a result of depredation alone.

8This assumption differs from that of the previous chapters, where once migration began, it did
not cease until the arrived in the estuary or ocean, and migration velocity was assumed
constant.
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TABLE 5.2 General optimization model summary.

Maximize: —J‘(\u+w +0(% 1)) 0 (u x k(x w §dt+D(w(t),t,t, t)

t

(objective functional)

U v, tg tg

Subjectto: x = u+v (displacement state eq.)
W =g(Vv,x W) (weight state eq.)
0SUS U,y (X D) (stream velocity

constraint)

IVl 2 v, (W) (swimming velocity
constraint)

x(ty) =0, w(t) =w, (initial conditions)
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TABLE 5.3 Main parameters and functions.

Variable or Unit Description
function
t s Time
u(t) ms ! Current velocity (control variable)
v (1) ms ! Swimming velocity (control variable)
z(1) ms?t Migration velocity
X (1) m Downstream displacement (state variable)
w (1) g Salmon weight (state variable)
Uryax (X D) ms Maximum current velocity
Vinax(W) ms* Maximum swimming velocity
a m Distance from redd to estuary
growth g(v,ix w g™t Growth rate of juvenile
parameters C cals? Consumption rate
and functions d calOs? Food delivery rate
N(v,xw?d calls? Net energy gain
c g cal? Calories to grams conversion constant
p (1) calOm 2 Prey density
T dimensionless Net conversion efficiency
y(w, t) m Reactive field diameter
h (w) sCcal? Handling time
survival 0(u, x 1) m?t Predator density
parameters  {(x,1) mst Predator search velocity
and functions k(x, w, 1 dimensionless Capture probability
i, (W, 1) st Ocean mortality rate
TRUA st Estuary mortality rate
other t, s Spawning time
t s Time that the juvenile arrives in the estuary
t, s Time that the juvenile enters the ocean (from the estuary)
ty s Time of emergence
m(w) egg number Fecundity

5.1 Model development
A model must be selected that is able to (a) describe the range of salmon behaviors

observed, (b) treat decision making as a state dependent dynamic process, (c) consider
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past and future costs and benefits, and (d) realistically link the state dynamics with
decisions. It must also be mathematically and numerically manageable. Achieving all of
these desirable qualities simultaneously is difficult—if not impossible—and eventually,

some simplifying assumptions will be made.

In the dynamic optimization modelling framework | present, six elements are present: an
objective functionalvhich values various behaviors, a setaftrol variables

representing the continuous choices available to the juveaiirol parameters

representing discrete choices, a sedtafe variablesepresenting the state of the
juvenile—in this case the size and downstream location of the juveoii&pl variable
constraintsspecifying the range of available choices, badndary conditionsn the state

variables (TABLE 5.2).

5.1.1 Control variables: current velocity and swimming velocity
At any given time, a juvenile makes two decisions: the current velocity in which it swims,

and its swimming velocity. These represent the control variables.

5.1.1.1 Current velocity
After emergence, juveniles have a range of current velocities in which to swim. Current
velocity is typically zero at the shoreline, and is typically maximal near midstream. Let

u(t) represent the chosen current velocity at ttme . Then

O0<su(t) Su,.(x(1),1), (5.9)

whereu,,,.(X, t) represents the maximum current velocity at downstream position and

timet.
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5.1.1.2 Swimming velocity
Juveniles also choose their swimming velooityt) , measured relative to the current
velocity. Swimming velocity ranges from zero to the fatigue speed of the/fistiw) ,

which is a function of weight. Therefore,

V(D] < Vinax (W (D), (5.10)

wherew (t) is fish weight at time . Fish swimming downstream have positive swimming

velocity, and those swimming upstream, a negative swimming velocity.

Since the swimming velocity is measured relative to the current velocity, the actual
migration velocity,z(t) , is the sum of the current velocity and swimming velocity at time

t (FIGURE 5.2),

Z() = u(t) +v(1). (5.11)
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7

——
Current velocityu

FIGURE 5.2 The control variables: swimming velocity and current velocity. Depicted
is a chinook fry swimming against the current, which therefore has a negative
swimming velocity. Since swimming velocity is measured relative to the current
velocity, the migration velocity is + v.

5.1.2 State variables: downstream displacement and weight

Two state variables are defined for a juvenile: its weig(it) , and its downstream
position,x (t) , measured relative to the point of emergence. Since fish make dynamic
decisions based on weight and position, it is essential to know how these states evolve

over time.

5.1.2.1 Downstream displacement

The first simplifying assumption | make, is that movement is tracked only in the upstream
or downstream direction—no lateral movement is accounted for. This assumption makes

the change in downstream position of the juvenile easy to compute:

%(6) = u(t) +v(1). (5.12)
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This is the rate of displacement relative to the stream substrate. The positive direction is
taken to be downstream, and the juvenile is assumed to be at prsitidh t = tat , a

total distance o meters from the estuary.

Within this framework, the juvenile can control its freshwater residence time, and
migration behavior through adjusting the valuesiof wand through time. When
v(t) = —u(t), the juvenile is holding station, wher(t) +u(t) <0 , itis migrating

upstream, and when(t) +u(t) >0 , itis migrating downstream.

5.1.2.2 Weight

5.1.2.2.1 Freshwater growth

Weight changes according to the amount of food the juvenile consumes, its standard
metabolic costs, and its active metabolic costs. Feeding activity involves an inherent
trade-off. If the fish is entirely inactive, then even though its metabolic cost is minimal, no
food is obtained, and consequently, weight declines. When activity is too great, metabolic
costs overtake the benefit of food intake, and weight again declines. The juvenile is faced
with choosing an activity level that strikes a balance between the rate of food intake and
metabolic costs (FIGURE 5.3). The growth function is assumed to be concave in
swimming speed, capturing the essential features described above. The speed at which

growth is maximized is denoted by (x, w, t)
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FIGURE 5.3 Typical growth curve as a function of swimming speed, where weight
and temperature are fixed. Growth is concave in swimming speed, and there is one
unique maximum value,= .48 mkL. Growth is negative for swimming speeds either
too small,(vx .21 mk?, or too great, v .71 mx?. This curve was derived based
on a Holling (1959) type Il feeding curve, and a metabolic cost curve in Hewitt &

Johnson (1991). It represents the growth rate of a fish weighing 5 g at a temperature of
15° C.

Weight changes according to the dynamical equation

w(t) =g(vxwi, (5.13)

whereg is a growth function which depends on the swimming velocity, location, weight,

and time. | express growth in terms of consumption, metabolic loss (active and inactive),

and waste loss,
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Growth = Net Energy Gairr Metabolic Loss

g(v, x W = N(v, x w ) -M(v,xw T()) (5.14)

The form of the growth function is taken from a combination of functions found in the
literature. The net energy ratd,(v, x w § , which consists of the portion of the ration
available for work or somatic growth is calculated according to Ware (1978), and the
metabolic rateM (v, x, w, T) , according to Hewitt & Johnson (1991). The fundtid
gives water temperature as a function of time, and from here forwvard, will represent

temperature (C).

Net energy gainThe energy available for work or somatic growth is known as the net
energy gain. To calculate this function, measures of food consumption and loss due to
specific dynamic action are needed. Food consumption depends on the food delivery rate,
and to capture the advantages of searching for food at a faster rate, | assume that the rate of
food delivery increases with swimming speed. Juvenile chinook are also assumed to be
surface feeders (Becker, 1973a)—although a similar derivation is possible for a general
drift feeder—to simplify the form of the intake function. The food delivery rate is directly

proportional to the swimming speed of the juvenile:

d=pX)y(xw,t)v, (5.15)

wherep (t) is the prey density on the stream surfaceyéwnit) is the width of the
intersection between the reactive field cross section and the stream surface. When the
juvenile adopts a “sit-and-wait” strategy € —u , picking off food from the surface as it

floats within visual range, the delivery ratedis= p (X, t) y(X, w, ) u
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As the delivery rate increases, not all food delivered will be consumed, because
consumption rateC , is limited by handling time of food items. A Holling (1959) Type II
feeding curve is used to model this phenomenon:

d

€= ivdmhw’

(5.16)

where an average ¢f(w)  seconds must be devoted to handling a single calorie of food,
then the time spent handling food, ashd is the food delivery rate. Not all of the food
consumed is available for work. Some is lost in nitrogenous and fecal waste, and to
specific dynamic action (Ware, 1980). The ratio of net energy to energy consumed is

called thenet conversion efficiency(t) .

Incorporating the expressions for the food delivery rate (5.15), and the food consumption

rate (5.16), the rate of net energy gain is

TP Yy w hIv

I+p(x y(x w, ) h(w) v (5.17)

N(v, x w ) =

Metabolic RateThe metabolic rate consists of energy lost through respiration, and is
calculated by first calculating an allometric function of weight, then increasing that value
through a water temperature dependence function and a factor representing activity.
Activity will be an increasing function of swimming velocity. The respiration function is

given explicitly by

R, (v, W, T) = a w’ O (T) CACT(v T), (5.18)

where the water temperature dependence function for respiration is given by
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fz (T) = exp(6,T),
and the activity function is given by
ACT(vw T) = exp((TQ— (TMg L)) V).

The variablesf,,, TOg, TM; , represent parameters that need to be estimated.

5.1.2.2.2 Estuarine growth

Upon arriving in the estuary, a juvenile salmon faces a new set of challenges: new
predators, new food habits, and higher salinities. These new challenges necessitate the use
of estuarine specific survival and growth equations—both relevant to ultimate

reproductive success of the individual.

Observations indicate that estuarine growth varies seasonally. Estimates of the
instantaneous increase in mean weight2zate-2.7%l1 da in the Campbell River estuary
(Levingset al, 1986),5.5% 0d" in the Nanaimo estuary (Healey 1982), 21666 Od "

in the Nitinat estuary (Healey, 1982). Reimers (1971) showed that in the Sixes River
estuary, growth in the estuary was from late April to early Ju@enm Od* , but was
relatively poor during June to Augut07 mmOd" ). Neilssral.(1985) suggested this
decline in growth resulted from a combination of high temperatures that reduced growth

efficiency and competition for food.

These observations suggest using an exponential growth equation with a time varying rate

of increase for the duration of estuarine growth. However, unlimited growth is unrealistic,
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and some amount of time growth should taper off, as it does when a von Bertalanffy is
applied. If | were to assume exponential growth instead, it would be difficult to get fish to
leave the estuary at all (unless the growth rate was assumed sufficiently small), because

the estuarine residence timgr-t;  is assumed to be free.

5.1.2.2.3 Ocean growth

Of the three chinook habitat types | cover: stream, estuarine, and ocean, the ocean contains
the greatest growth potential for salmon. For example, upon entering the ocean, chinook
can averagd0 cm in fork length, and afteryrs  of ocean growth, average &0ocimn

in fork length (Loeffel & Wendler, 1969). Data of Loeffel & Wendler (1969) show two
important characteristics: ocean growth rate is greatest in the chinook’s first year of life

and tapers off with time, and there is a definite seasonal pattern of growth, with rapid
summer growth and slow winter growth. Like Henry (1972), | use a Bertalanffy growth

curve to model ocean growth (Ricker, 1976):

W= a, () w () - b, (Hw (D). (5.19)

2/3

The first terma, (t) w(t)” "~ , describes anabolism, and the last tey) w (t) ,

catabolism.

5.1.3 Fitness measure

The fitness measure is lifetime reproductive sucdess, | [Im , Where is the probability
of survival from emergence to spawning, and is the number of eggs produced by a
female at spawning. The probability of survival from emergence to spawning consists of

three factors: the freshwater survival,t) , estuarine survgét,) and ocean entry to
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spawning survivals, (t) . Since survival factors and reproduction are typically size

dependent, growth in freshwater, the estuary, and the ocean is also considered.

Expected lifetime reproduction is defined by

R = S(1) S (t) S (t) m(w(t)) .

(I have ignored the egg-to-fry survival in the above expression since, assuming it is
constant, it does not influence the optimal solution sought.) | could attempt to maximize
lifetime reproductive success directly with respect to the control variables and control
parameters, however, there it is more convenient to use the natural log of reproductive

SUcCCessS,

J =log(R).

In the context of dynamic optimizatiod, is a functional that depends on the control
variablesu ands as well as control parameters , tand : all of the variables that

represent choices. This functional is
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J(u’ \I’ u’ te’ tS) =
tf

—J’ (lu+v +2(x,1))0(x t)k(w, t)dt (freshwater)

t

- I H, (w, t) dt (estuary)
- J’ M, (1) dt (ocean)
+ (log (a,) +bylog(w(t))) (fecundity)

The newly introduced variables appearing in this expression will be defined later.
For convenience, define a post-migration fithess component,

® (W (tf) ’ tf’ te! ts) = (520)

—Jipe (w, 1) dt—JS'uO(W, t) dt+log (a,) +b,log (w(ty)).

Then the functional can be simplified to

J(U VGt t) = (5.21)

N (ORI CRI LI CE LS CTORAMAR
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Since the log is a monotone increasing function, control variables maxinizing also
maximizeJ , and vise versa. In this formulatidr{,u v t, t., t) isdbgctive
functional or theperformance indext is the quantity we strive to maximize with respect

to the control variables and , and the timgs, , ,tand

5.1.3.1 Freshwater survival

Predation is often implicated as the main cause of juvenile mortality after emergence, and
heavy predation losses have been documented (Foerster & Ricker, 1941; Hunter, 1959).
Unfortunately, little is known of the in-river losses due to other morality agents like

disease, parasitism, and starvation. Throughout, | assume that predation is the sole source
of mortality. When the other mortality factors are constant with respect to the control
variables and parameters, then the optimal behavior is unaltered by their inclusion.
Although this assumption is unrealistic, the influences of other mortality factors are likely
gualitatively similar to the influence of predation: longer residence time means greater

exposure risk, and risk decreases with juvenile weight.

Encounters with predators are due to a combination of predator and prey activities. The
predator encounter rateg, an instantaneous rate giving the average number of predators
encountered per second) increases with migration speed and also with predator search
velocity. Predator search velocity is incorporated to allow for predator encounters whether
or not the juvenile is stationary. Over a small increment of tlhe, , the probability of a

predator encounter is

Pr{Encounter inAt} = (jJu+v +{(x,1))0(u,x t)At, (5.22)

where8 (u, x, t) is the predator density, ati¢x, t) is the predator search velocity.
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The predator density function represents predators per meter of river and is allowed to
vary with current velocity. This allows for the possibility that predator densities may be
smaller in nearshore areas, where more protective cover may exist (Solomon, 1981). Next,
| assume that the probability that an encounter leads to a capture is a function of position,
fish weight and timek (x, w, f) . In most taxa, larger individuals are assumed to stand a

better chance of escape than smaller ones (Werner & Gilliam, 1984).

Temperature also influences predation rate. Vigg & Burley (1991) observed that the daily
ration of northern squawfigPtycholcheilus oregonen3jsa major salmonid predator on

the Columbia River, increased with temperature from abdusalmonid<] pedator' at
8.0°C to 7.0 salmonids] preator" at21.5°C . The influence of temperature may be
incorporated in the capture probabilik(x, w, § , as a function of time, , and

downstream positior

Putting these elements together, | derive the probability that a juvenile survives from
emergence to an arbitrary time , during its freshwater residence. The probability of death
between tim¢ ant+ At |, is the probability of an encounter and a capture in this interval,

namely,
Pr{deathin[t,t+At]} = (Ju(t) +v ()| +T(x1))0(x ) k(x w §At. (5.23)

The probability that the juvenile is alive at time At is equal to the probability that it

survives to time times the probability that it remains alive between t -add

S(t+At) = (1-Pr{Deathin[tt+At]})S(9. (5.24)
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By substituting (5.23) into (5.24) and taking the limitds  tends to zero, we obtain the

differential equation for survival during migration as

‘;'ltsz —(U+v+2 (6 1))0(u x Hk(x w9 S,

with the initial conditionS(t) = 1 .

The probability of surviving in-stream from emergence to an arbitrary time, is then

S(9 = expg—_[(\ ut V+ (% €)) 0 (U x &) k(x w E)dig- (5.25)

The fish arrives at the estuary at titne —a control parameter—and begins its salt water

residence.

5.1.3.2 Estuarine survival

Little is known about the mortality of juvenile salmon during estuarine residence, but in
this general treatment, | allow estuarine mortality rate to vary with size and season.
Specifically, | assume that the probability of death in an intgryahk At] is proportional

to At:
Pr{Deathin [t,t+At]} = p (w, t)At, t;<t<t,,

wherep, (w, t) is the instantaneous estuary mortality rate. The probability of survival
from time from the moment the juvenile enters the estuary to an arbitrary tithe ,
prior to ocean entry, is the probability that it is aliveé at times the probability that is does

not die during[t, t + At]
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S (t+A1) = S.(1) (1-p(w, )AY, (5.26)

SubtractingS, (t) from both sides of (5.26), dividingdy , and then taking the limit as

At tends to zero, yields the differential equation

d
= DS,

with boundary conditiors, (t) = 1 ; its solution is

S (1) expg—_[ue(w, £) dag. (5.27)

In the most general case, estuarine residence time, , is left free, since it depends on

control parameters, artg

5.1.3.3 Ocean survival

As in the case of freshwater mortality, ocean mortality is thought to decline with size
(Parker, 1962). Early during their ocean residence, salmon fall prey to fishes, birds, and
mammals, and as they growth become potential prey for fewer and fewer species. At a
weight of about 250 g salmon are no longer available to most birds. On the high seas, the
number of predators that can take large salrean qalibut and killer whales) is limited
(Ricker, 1976). | assume that the probability of death in a small interval of tihe At]

is proportional taAt |,
Pr{Deathin [t,t+At]} = p (w, )AL, t.<t<t,

wherep, (w, t) is the weight and time dependent instantaneous ocean mortality rate, and

t, is the time that the chinook returns to spawn. Assuming the observations of and Parker
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(1962) and Ricker (1976) are true, mortality rate falls rapidly for small weights, and

approaches a constant as weight increases.

Following a development similar to that of the derivation of the estuarine survival

function, the ocean survival is

S () = exp i, (w,€) dE - (5.28)

5.1.3.4 Fecundity

The next component of the fithess measure (reproductive success) considered here is
fecundity. Many studies have confirmed significant fecundity-size relationships within
chinook populations (Galbreath & Ridenhour, 1964; Healey & Heard, 1984). The majority
of these studies relate the fork length of a mature female to the number of eggs. | relate
fecundity to weight rather than length, using an allometric relationship between length and
weight to convert length data to weight data. The form of the fecundity-weight

relationship is

m(w = aw™, (5.29)

wherem(w) is egg number and is weight.

5.1.4 Egg-to-fry survival
To complete the description of survival during the chinook life cycle, we must consider
egg-to-fry survival, which is the average number of eggs surviving to the fry stage divided

by the average number of eggs deposited in a redd per female. Factors influencing egg
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mortality include low dissolved oxygen concentrations, high percentage of small particles
(fines) in the substrate, flooding and scouring, and dewatering. According to Healey
(1991) the estimates of egg-to-fry survival are hard to interpret because of uncertainty in
the estimates of both the potential eggs deposited and the numbers of fry produced. In the
proposed model, | will assume that egg-to-fry survival is a constant, and since it merely
scales the lifetime reproduction of a female, it has no influence on the solution to the

optimal control problem at hand.

5.2 Optimization model summary

In this chapter, | presented a justification for approaching the problem of diel migration
pattern and current velocity selection from a behavioral ecology perspective. By
considering the possible selective pressures on shaping the behavior of young salmon, and
couching them in equation form, | developed an optimization model that retained the
ability to predict migration timing as in other chapters, but was much more general in that

it treated diel migration and current velocity selection patterns. The resulting optimization
problem was dynamic, and included current velocity and swimming velocity as control
variables; time of entry into the estuary, time of ocean entry, and spawning time as control
parameters; weight and downstream displacement as state variables, and the log of

expected reproductive success as the objective functional.

5.3 Discussion
The dynamic optimization model presented here retains the ability to predict migration
timing as previous chapters, but includes more detail on the migratory and pre-migratory

behavior itself, such as diel migration and current selection. Although this behavior is
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really the focus of the model, in its most general form, it is also able to predict time of
entry in the estuary and ocean, as well as spawning time. These times are chosen so that

the fitness criterion is as large as possible.

One must use such a general model cautiously. In the case where a general model does a
good job of giving qualitative results consistent with observations of nature, one gains
very little. Often, it is only when the model misses the mark that anything can truly be
gleaned from the modelling experience. This fact together with the need to find numerical
solutions to the optimization problem prompts the use of an incremental approach
demonstrated in the treatment of age at migration in previous chapters. First, a very simple
form of the model is assumed and its qualitative results are compared to nature. Observing
the areas of inconsistencies with nature, hypothesis for the discrepancies are given, and
new elements are added to the model to test the hypothesis. The results of this model are

then weighed against reality, and the process continues.

Be aware that the models used here an in previous chapters are based on perfect
knowledge, and that the behaviors predicted might be nearly optimal, but the salmon may
have no known mechanism for achieving the optimal behavior. (Recall that | assumed
from the outset that the organism either possesses or can develop a mechanism for
achieving nearly optimal solutions.) A complex behavior such as migrating upstream to a
ephemeral feeding area at exactly the right time, may be an optimal, but it is likely
impossible based on known mechanisms. However, from a philosophical point of view,
nature usually punishes inefficiency (sub-optimal behavior), and in response, animals can
develop elaborate behaviors, which at first seem improbable, to “solve” ecological

problems.
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Although this model was developed specifically to analyze the problem of chinook
migratory behavior, its use is not limited to this species. The rest of the genus
Oncorhynchuss subject to the selective pressures operating on chinook, albeit to different
degrees. Very simple migration strategies such as immediate migration after emergence
displayed by pink salmon can be treated with the model as well as complex migration
strategies, such as upstream to a lake prior to migration displayed by some sockeye

populations.



CHAPTER 6 MODEL ANALYSIS

Now that the dynamic optimization model has been specified, it must be solved. A
solution consists of swimming velocity and current velocity schedules, as well as estuary
entry, ocean entry, and spawning times that make the fithess measure as large as possible.
In mathematical terms, it consists of control variables and control parameters that
maximize the objective functional. Since the problem involves optimizing with respect to
functions of time (the control variables), the solution is not found by simply taking a
derivative and setting it equal to zero—a technique applied to a typical static optimization
problem. Rather, dynamic optimization problems are usually approached with the
technigues oflynamic programmin@gMangel & Clark, 1988) oPontryagin’s Maximum
Principle (PMP) (Pontryagiret al, 1962), and recently, with the modern computational
techniques of genetic algorithms (Michalewatzal, 1992) and evolutionary

programming (Fogel, 1994). In this chapter, | apply the PMP, or in more recent

terminology, due to generalizatiotBe maximum principle

Dynamic optimization problems are of two types: continuous and discrete time. In the
continuous time case, the dynamic programming approach is equivalent to the maximum
principle (Dixit, 1976), but in practice, optimal control is usually applied to continuous
time problems, and dynamic programming, to discrete time problems. Dynamic
programming is the technique applied by Mangel (1994) in his studies of salmon life

history. It is a solution method that starts with the final stage of the life history
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(reproducing individuals) and then links to previous stages working backwards through

time (Mangel & Clark, 1988).

For some unusual problems, it is possible to &ndlytical solutiongo optimal control
problems using dynamic programming or the maximum principle, but in practice,
numerical techniques must be applied. My strategy for solving the optimal control
problem is to apply an analytical technique to simplify the computer algorithms used to
obtain numerical solutions. Besides simplifying the algorithms, these analytic findings can

reveal qualitative information about the solution useful for biological insight.

TABLE 6.1 General optimal control problefh.

&

Maximize: —J‘ (lu+v +2(x 1)) 8 (u x Hk(x w dt+d(w(t), t,t,t) (objective functional)
t
UV, bt tg ’
Subjectto: x = u+v (displacement state eq.)
W =g(Vv,x W) (weight state eq.)
0SUS Uy, (X D) (stream velocity
constraint)

IVl 2 v, (W) (swimming velocity
constraint)

x(ty) =0, x(t) =a,w(t) = w, (initial and final
conditions)

tostst, t<t <t (control parameter

constraints)

aThis general model has control constraints that depend on the state variables and an objective functional integrand
that is not continuously differentiable in the control parametexsif involves the absolute value of the sum of
the control variables). Therefore it is a nonsmooth dynamic optimization problem.
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The analytic technique | wish to apply is the maximum principle; however, as the general
problem stands (TABLE 6.2), there are two difficulties preventing its use. First of all, the
problem involves control parameterg( t;, t., t.), but the formulation of Pontryagat al.
(1962) allows no such parameters. However, Hestenes (1966) handles the control
parameters in a formulation of tigeneral control problem of Bolz&econdly, (i) the
control constraints are functions of the state variables, and (ii) the integrand of the
objective functional is not continuously differentiable in the control variables. If the
control problem involved (i) alone or (ii) alone, it would remain in the realm of Hestenes’s
work, but as it stands, it is a problemdyhamic and nonsmooth optimizaﬂowhich

requires a more general technique than the maximum principle (Clarke, 1989).

To side-step this last difficulty, |1 will assume that the control constraints are independent
of the state variables—although in reality this assumption is violated—simplifying the
problem so that it becomes a general control problem of Bolza. Removing the state
dependence to the control constraints may not change the qualitative nature of the optimal
solution, only its quantitative nature. This can be tested by applying nonsmooth

techniques, dynamic programming, or stochastic optimization.

6.1 More simplifying assumptions
With the goal of first developing some intuitive results appearing in analytic rather than
numerical form, | choose to make another simplifying assumption: that is to remove the

relationship between current velocity and predator density. Unfortunately, this removes a

1. Itis imprecise to call these problems optimal control problems. They are more accurately called
differential inclusion problemhich subsume problems in optimal control. The techniques to solve such
problems generalize Pontryagin’s Maximum Principle (Clarke, 1975).
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selection pressure that favors small fish remaining inshore to avoid predators in swifter
currents, and the solution will likely not reflect the fact that fish move into swifter waters
as they develop. As an advantage, the optimization problem becomes simpler to analyze,

and at least the selection pressure for diurnal patterns of migration is retained.

Another assumption made to simplify the optimization is that fitness is enhanced by a
small increase in weight. This assumption makes the co-state variable associated with
weight positive (See “Co-state variables” on page 123). It is a reasonable assumption
since larger fish are generally more likely to avoid predators, and have a greater survival

probability.

TABLE 6.2 Simplifying assumptions of this chapfer.

Assumption

A.1 Maximum current velocity does not vary with river kilometer, but is
allowed to vary with time.

A.2 Maximum swimming speed does not vary with weight, but is
allowed to vary with time.

A.3 Predator density does not vary with current velocity.

A.4 A marginal increase in fish size increases fitness.

@These assumptions result in a less general model than that presented in CHAPTER 5.
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TABLE 6.3 The simplified optimal control problem.

Maximize:

U v, gt

Subject to:

1:f
U+ +2 (6 9)B(x Dk(x W Hdt+ @ (W(L), bty 1)

t0
X=Uu+v
W=g(Vv,xw
0SUS Uy, (D)
VI = V4, (1)

X(t)) =0, x(t) =a,w(ty) =w,

(objective functional)

(displacement state eq.)
(weight state eq.)

(stream velocity
constraint)
(swimming velocity
constraint)

(initial and final
conditions)

(control parameter
constraints)




121

TABLE 6.4 Special notation.

Variable or function

Description

u* ()
vE ()
x* (1)
w* (t)
t*

A ()
A, (1)

o, (X, W, )\1, t)
0, (X, WA, t)

Vg (X, w, t)

Vg (%, w, 1)

Ugrit (% W, )\l, )\2, t)

Urit (X W, Ag, A 1)

Optimal current velocit§.

Optimal swimming velocity.

Optimal downstream displacement trajectory.

Optimal weight trajectory.

Optimal time of arrival in the estuary.

Optimal time of ocean entry.

Optimal spawning time.

The co-state variable associated with downstream displacement.

The co-state variable associated with weight.

The switching function when, (t)  is positive

The switching function when, (t)  is nonpositive

Maximum growth speed. It is the unconstrained swimming speed that
maximizes growth.

Constrained maximum growth speed. The swimming speed that maximizes
growth, when constrained it is constrained by the maximum swimming speed.
\79 = min(vg, Vima -

Critical current velocit)P. It is a critical value of the maximum current velocity
used to determine the values of the current velocity and swimming velocity that

maximize the Hamiltonian.
Constrained critical current velocity. It is the critical current velocity

constrained by the maximum swimming spegg, = Min (U it Vimay

aThe policy functions use similar notation but are functions of the state and co-state variables.

b The critical current velocity is defined more clearly in APPENDIX B. It is useful in the case where the switching
function is negative and the maximum swimming velocity exceeds the maximum current velocity.

6.2 Applying the maximum principle

The goal of applying the necessary conditions that comprise the maximum principle is to

maximize the objective function with respect to the control variable functions and control

parameters, and to use these optimal choices to help determine optimal state trajectories.

In the discussion that follows, optimal choices of the control parameters, control variables,
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and state variables are indicated by an asterisk “*” (TABLE 6.4). Using this convention,
u* (t) andv* (t) represent optimal choices for the current velocity and swimming
velocity variablesx* (t) anev* (t) , optimal choices for the downstream displacement
and weight variables, artgt t.* , and represent optimal choices for the control

parameters.

The maximum principle is applied in two phases. First, a function called the Hamiltonian
is maximized with respect to its control variable arguments. Secondly, these maximizing
arguments are used to construct a two-point boundary value problem whose solution
includes the optimal state variable trajectories, (the optimal weight and downstream

displacement schedules).

6.3 The value function

Thevalue functiorat timet ,V (x, w, t) , also known as tlogtimal return functionis

defined as the unique value of the objective functional acquired by starting from a point
(x, w, ) and proceeding optimally to the terminal time, in this ¢ase . For convenience,
the terminal time is the time of entry into the estuary, because at that point, the integration

in the objective functional terminates. The value function is defined mathematically as

V(X, W, t) = (630)

{=[(urv+2(x8))8(x &) k(w, &) d& + P (W(t), bt 1) } -

max
u v, &t tg

The constraints on the control variables, terminal condition, and conditions on the control
parameters must be observed in calculating the value function (TABLE 6.1). The value

function is sometimes called thimess-to-gon the behavioral ecology context, because it
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represents the remaining fitness of the individual from time , to the finaltfime, ,
assuming an optimal choice for the control variables \and , and the control parameters

t, t. andt, .

6.3.1 Co-state variables
A, (t) andA, (t) represent, respectively, the marginal contributions of the state variables

x(t) andw (t) to the objective functional at time . Mathematically, they are defined by
A(D) = Vo(x w9 andA, () =V, (x w1t !

These variables are called-state variablesn economics, they are knownstgadow
prices.Biologically, they show how the fitness, measured over the juvenile’s remaining
lifetime, is influenced by a marginal increase in downstream displacement or weight. For
example, if the co-state variable associated with displacement, , is positive, then
remaining fitness is enhanced by an increase in downstream position; otheyisd) if ,
then a downstream increment decreases remaining fitnass=10 there is no advantage
to being further upstream or downstream. In the analysis that follows, only the co-state
variable associated with weight is assumed positive (see simplifying assumption A.4 of
TABLE 6.2). This assumption cannot be imposed without specifying certain conditions on
the model parameters and functions, because the co-state variables are dependent upon
model functions and parameters. The following two results describe situations in which
the co-state variables are known to be positive or nonnegative from the time of emergence

to estuary entry (i.e. theme horizol. The proofs of these results are in APPENDIX A.

1. The notation denotes partial differentiation with respect to the subsiceipt/( = v andv,, = v ).
. L 0x ow
This notation is used throughout.
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Result 6.1 If kis decreasing inv  and is increasingw , then(t) IS honnegative
for all t in the time horizon. If, in addition, eith&r is strictly decreasingvin  or s

strictly increasing inw , thei\, (t) is positive for dll in the time horizon.

Result 6.2 If u,,,andg are increasing ik k { ,anfl are decreasingkin ; and is

decreasing inw ; thei, (t) is nonnegative for &ll in the time horizon.

6.3.2 The Hamiltonian
The first step of the maximum principle is to maximizeHaeniltonianwith respect to its
control variable arguments. The Hamiltonian consists of elements of the objective

functional integrand and the state equations,

HXw u yA,A, L) = (6.31)

—(lu+r v+ (1)) Bk(x W § +A (U+V) +A,g(V, X W 9.
In maximizing the Hamiltonian, the control constraints must be observed.

The maximizing control variable arguments will be “functionskoW, A , A, and

These maximizing arguments are not really functions, since it is possible for multiple
values ofu ands to maximize the Hamiltonian at the same foimy A, A, t) . The
maximizing arguments, callgblicy functions, are denoted byu* (X, w,A, A, t) and

V¥ (X, W, A, A, t) (Dixit, 1976). Whenever the value returned by one of these policy
functions is a single poinit.€., the singleton set), the set is represented by the point itself;

otherwise, the entire maximizing set is specified. Do not confuse the policy functions with

1. This is a term borrowed from economics. To be more precise, these “functions” are actually
multifunctionswhose output can be a set containing more than one element.
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the optimal controls themselves; the optimal controls are functions of time alone (TABLE
6.1). Although they are given similar notation, the context will make it clear which is
meant. The optimal control variables are connected to their corresponding policy

functions through
u* (t) Ou* (x* (1), w* (t),A, (t),A,(t),t) and (6.32)
vE (t) Ov* (x* (), w* (1), A (1), A, (D), 1) 1 (6.33)

The simple act of maximizing the Hamiltonian yields a great deal of information about the
optimal behavior types, although more is needed before the optimal state and control paths

can be constructed (FIGURE 6.1).

The analysis will proceed by considering two different cases: the first where the co-state
variable associated with displacement is positive, and the second, where it is nonpositive.
In both cases, | first determine what values of the current velocity are optimal given an
arbitrary choice of the swimming velocity. This amounts to maximizing the Hamiltonian
over cross-sections defined by fixed swimming velocity. This allows me towtrite as a
function ofv . When the result is substituted into the Hamiltonian, the optimization
problem becomes one-dimensional, involving only the swimming velocity, and it is easier
to analyze. For the sake of brevity, only an outline of the methodology and results are
presented in this chapter. A more complete demonstration of the Hamiltonian optimization

may be found in APPENDIX B.

1. The distinction between an optimal control a policy function (which returns a set of values maximizing
the Hamiltonian) is very important in the case of a singular path, where the optimal control is not uniquely
determined by the policy function (Conrad and Clark 1987; Huffekal. 1992).
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A function known as the switching function plays an important role in determining the

optimal migration behaviors. There are two different switching functions used:
o, = A\,-6kando, = A\, +6k. (6.34)

When the co-state variable associated with displacement is positive, is used as the
switching function; otherwiseg, is the best choice. It turns out that behavioral changes

will be determined by a change in sign of one of these switching functions.

6.3.2.1 When the co-state variabl®4 is positive

In this section, | present the optimal behavior results when the co-state variable associated
with displacement is positive. There are three types of behavior that the fish show at any
time: 1) a predator avoidance and feeding behavior and 2) an active migration behavior 3)
a behavior intermediate to (1) and (2) that represents a singular case (FIGURE 6.1). These
three behaviors correspond to when the switching funatipn, , is negative, positive, and

zero, respectively.

1. Inlinear optimal control problems involving a single control variable, the switching function is the
multiplier of the control variable, as it appears in the Hamiltonian. It indicates whether the maximum or
minimum value of the control variable is optimal. When the switching function is zero, there are infinitely
many values of the control variable that maximize the Hamiltonian, and it is possible that the solution admits
asingular control The control problem presented here is not linear. However, the Hamiltonian is piecewise
linear inu+ v, the migration velocity. When the migration velocity is positive, its multiplief is  ; when
negative, its multiplier iw, . It turns out, in maximizing the Hamiltonian, that the sign of the funefion,
provides the best indicator of the optimal controls when the co-state varjable s positivg, and  provides
the best indicator whek,  is nonpositive.
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FIGURE 6.1 Optimal current and swimming velocities as determined by maximizing
the Hamiltonian wheR is positive? In figure (a) the maximum current velocity
exceeds the maximum growth speed. In figure (b) the reverse is true. When the
switching functionoq is negative[d], behavior is driven by predator avoidance and
feeding. When it is positive], behavior is driven by the need to migrate to the ocean
and take advantage of its tremendous growth potential. When it is zero, behavior is
intermediate t@] and[], and the current velocity is not uniquely determined (unless

Umax = 0).
a1n all cases | assumed that the maximum swimming speed exceeded the maximum growth speed.
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TABLE 6.5 Optimal choices of current velocity corresponding to different choices of

the swimming velocity wheRn, is positive.

Sign of
Switching Swimming Velocity Optimal Current
Case Number  Functiono, Condition Velocities
1 + none U* = Upax
2a - v>0 u* =0
2b - Unaxt V<0 U* = Upay
2C - VSO0 UtV u* = -v
3 0 v>0 u*= [0, Upal
3b 0 Upnaxt V<0 U* = Upax
3c 0 VSO0 UtV u*= [-V, Upnad

Three different cases arise, depending on the sign of the switching function. Optimal current velocity depends on the
sign of the switching function and the swimming velocity.

In cases 3a and 3c there is no single optimal choice for the current velocity. This is the case where the switching
function is zero, and the problem may admit a singular path.

The results of the Hamiltonian maximization can be divided into three different cases
depending on the sign of the switching functamn . In the following analysis, each of the
three cases characterized by the sign of the switching function is considered separately,
and | determine the optimal current and swimming velocities associated with each
(TABLE 6.5). To guide intuition, recall that the switching function  is the difference of
the marginal value of an increment in downstream displacethgnt, , and the predation
gradient,0k , which represents the marginal predation risk of migration over this
increment of downstream displacement. When the predation gradient is small relative to
A,, makingo, positive, downstream migration is optimal; otherwise, a behavior that

keeps immediate predation risk low is best.
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6.3.2.1.1 A positive switching functiond; > 0)
When the predation gradietlk , exceads , then the switching function is positive and
the optimal current velocity is known to bg,,  (TABLE 6.5). A plot of the Hamiltonian
along the curver = u,,, shows that the optimal velocity is given by min(V, v,,.,) ,

whereVv' satisfies
o, +A0,(V,w, t) =0. (6.35)

When there is not solution to (6.35), then the maximizing velocity is- O . This occurs

wheno, +A,g,/ _, <0, wherg, is a right-hand derivative. This represents an extreme

V=

case in which an increase in swimming velocity above zero serves only to decrease

growth.

Overall, the behavior when the switching function is positive can be characterized as an
active downstream migration behaviarbehavior driven more by the need to migrate
than by immediate feeding and predator avoidance. A fish’'s best option is to actively
migrate downstream, swimming in the swiftest current. Its swimming velocity is zero (in
the case of severely depressed growth), or greater than its optimal growth velocity
(provided that the optimal growth velocity does not exceed the maximum swimming

speedyVpay ).

6.3.2.1.2 A negative switching functiong < 0)
When predation gradienk , islessthgn , then the switching function is negative and

the optimal current velocity lies along the curve
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a 0 if v>0
u= D'jmax If V<—Umax '
O-v if -u..<v<0

max—

Optimizing the Hamiltonian over this curve yields the desired optimal swimming velocity
(TABLE 6.6). The optimal strategy can be more complicated when the switching function
is negative than when it is positive. When the switching function is positive, the optimal
strategy is always downstream migration. When it is negative, the optimal strategy may
involve no migration, downstream migration, or even upstream migragmending on

the value of the maximum current speeldtive to the maximum growth velocity. When

the maximum current speed exceeds the maximum growth speed, then the fish holds
station, swimming against the current at a rate that maximizes growth. Here, the fish has
the best of both worlds: it minimizes its expected risk of predation (its predator encounter

rate is smallest when stationary), and it maximizes its growth.

What happens when the maximum current velocity drops below the maximum feeding
speed? One thing is known for sure: iingpossiblefor a fish to have the best of both
worlds. For if it minimizes predation risk by remaining stationary (with respect to the
substrate), its growth is not maximal, and conversely, if its growth is maximait (s
swimming at its maximum growth speed), then its predator encounter rate is not minimal
since it is not stationary. The fish must choose a swimming velocity that balances the
trade-off between feeding and predation, and this means that the optimal strategy will
consist of swimming more slowly than the optimal growth speed while migrating either
upstream or downstream. When the maximum current velocity is zero, downstream

migration is optimal and the optimal current velocity choice is zero. When the maximum
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current velocity approaches the optimal growth spapsgtream migratioms optimal and

the optimal current velocity choice s, ,,

The possibility of upstream migration is surprising since, in essence, migrating upstream
serves to increase the length of the migration route, and consequently the number of
predator encounters. What compensates for this detriment? The answer is—growth during
the upstream migration. Recall that predator encounters are less likely to lead to capture if
the juvenile is larger. Therefore, if the maximum current velocity is less than the
maximum growth speed, the juvenile may opt to swim upstream near its maximum growth
speed (and in the swiftest current to reduce predator encounters), with the benefit of
increased growth, and hence the possibility of better suré@vah though the strategy is

known to lead to a greater number of encounters.

TABLE 6.6 Optimal swimming velocity summary when the switching functgrms

negative?

Optimal current and swimming

Possibility u.,,, Condition velocities

i Vg < Upax U* = =v*, v¢ = -y,

iia 0 < Upax < Ugrit u* =0,0<sv* v,

iib 0 < Ugpir < Upax< Vg U* = Upaw ~Vg SV < —Upay

iic Viax™ Unax = Ugrit >0 Velocities given in (iia) and (iib) are both
optimal.

Here the switching function is negative. The optimal swimming velocity depends on the value of relative to the

constrained maximum growth velociﬁj = min(vg, Vmay - When the maximum current velocity exfzgeds
(possibility i), the juvenile optimally holds station swimming against the current at its optimal growth speed. If the
maximum current velocity does not exceed the constrained maximum growth speed (possibility iia—c), the optimal
velocities depend on the maximum current velocity relative to a critical uglyg, or the constrained critical
current veloCityUeriy = Min(Usi Vinay) -

1n iia-b the optimal swimming velocity is unique and lies in the specified interval.
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6.3.2.1.3 Switching function zerod; = 0)
When the switching function is zero, the optimal swimming velocity is found by

maximizing the Hamiltonian over the region

[0 Upad if V>0
u= D {umax} |f V<_umax .
Ol-v, u,,] if “Unxsv<O0
This maximization problem does not yield a unique current and swimming velocity
(TABLE 6.7). Rather, unless,..,, = 0 , there are infinitely many current velocities

maximizing the Hamiltonian. One consistent result, however, is that the optimal

swimming speed is alwaysin (v, Vi,,)

This case may correspond to a singular path. Although maximizing the Hamiltonian does
not produce unique values of the current and swimming velocity when the switching
function is zero, it does not mean that the optimal controls are not unique. More analysis is
needed, and dynamics must be considered (See “The canonical equations and optimal
control parameters” on page 138). It is also possible that the switching function is zero for

only an instant of time, ruling out the possibility of a singular path.
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TABLE 6.7 Optimal swimming velocities when the switching functmnis zero.

Possibility u,,, Condition Optimal Velocities
i Vg < Uy U* = [Vg, Upnod @ndv* = —v,, or
u*= [0, Uy, andv* = v,

~

i Upnax < Vg u*= [0, u,,] andv* =

<

g

Here the switching function is zero. As in case 2, the optimal velocities depend on the maximum current velocity
relative to the constrained maximum growth velocity. Regardless of the valiie, of , the optimal current
velocity is not uniquely determined, while the swimming spéed, , is always equal to the constrained
maximum growth speed. When, .. < \79 , the juvenile swims with the current, but@gk@umax , the juvenile
optimally swims either with the current or against the current.

6.3.2.2 When the co-state variabl®4 is nonpositive

In this section, | derive optimal behavior when the co-state variable associated with
displacement is nonpositive (meaning that the marginal value of displacement
downstream is zero or negative). The results show that there are three types of behavior
that a fish shows at any given time: 1) predator avoidance and feeding, 2upstream
migration, or (3) a behavior intermediate to (1) and (2) (FIGURE 6.1). These three

behaviors correspond to when the switching functmn, , is positive, negative, and zero,

respectively.
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FIGURE 6.2 Optimal current and swimming velocities as determined by maximizing
the Hamiltonian when, is nonpositivé? In figure (a) the maximum current velocity
exceeds the maximum growth speed. In figure (b) the reverse is true. When the
switching functiono, is positive,[J, behavior is driven by predator avoidance and
feeding—fish swim in the swiftest current holding station, or moving upstream. When
it is negative[], behavior is driven by the need to migrate upstream. When it is zero, a
behavior intermediate td and is best.

a1n all cases | assumed that the maximum swimming speed exceeded the maximum growth speed.
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TABLE 6.8 Optimal choices of current velocity corresponding to different choices of

the swimming velocity wheNq is nonpositive.

Sign of the
Switching Swimming Velocity Optimal Current
Case Number  Functiono, Condition Velocities
1 - none u* =0
2a + v>0 u* =0
2b + Upnax T V<O U* = Upayx
2c + VSO0<S UtV u* = -v
3a 0 v>0 u* =0
3b 0 Upax T V<0 u* = [0, Upad
3c 0 VSO0< UtV u*= [0, -]

Three different cases arise, each depending on the sign of the switching function. Optimal current velocity depends on
the sign of the switching function and the swimming velocity.

In cases 3a and 3c there is no single optimal choice for the current velocity. This is the case where the switching
function is zero, and the problem may admit a singular path.

6.3.2.2.1 A negative switching functionaj < 0)

When the predation gradierttk |, is less than , then the switching fumaction  is
negative and we need only optimize the Hamiltonian along the curvé® (TABLE 6.5).
A plot of the Hamiltonian restricted to this curve shows that the optimal velocity is given

by v¥ = —min (|V"], V.. » Wherev' <0 , and satisfies
o,+A0, (V' x,wt) =0. (6.36)

If o,+A,09. _,>0(g,is aleft-hand derivative), then (6.36) has no solution, and the

maximizing swimming velocity is* = 0 . This is an exceptional case where growth is so

depressed that an increase in swimming speed d@ove decreases growth.

Overall, when the switching functias, is zero,grstream migration behavias

optimal. It is a behavior which is driven more by the need to migrate than by freshwater
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predator avoidance and feeding. A fish’s best option is to actively migrate upstream,
swimming in the slowest current (typically nearshore). The optimal swimming velocity
greater than its optimal growth velocity (provided that the optimal growth velocity does

not exceed the maximum swimming speeg,, ), or zero if growth is too depressed.

6.3.2.2.2 A positive switching functiond, > 0)

When the predation gradierttk , is less than the switching function is negative and

the optimal current velocity lies along the curve

50 if  v>0
U= [Unae if V<-Uny (TABLE 6.6).

U-v if —u,,sv<0

TABLE 6.9 Optimal swimming velocity summary when the switching functeris

positive.
Optimal current and
Possibility u,,, Condition swimming velocities
i Vg < Upax u* =V, V¢ = -V,
iia Unax<Vg & A0, (“Upap X, W, ) +0,<0  U* = Upay,
v¥ = —min (IV"], Viay
iib Unax<Vg & A0, (“Upap X, W, ) +0,>0  U* = Upay VF = —Upay

The optimal swimming velocity depends on the value,Qf relative to the constrained maximum growth velocity
\N/g = min(vg, Vmay - When the maximum current velocity exceeds the constrained maximum growth speed
(possibility i), the juvenile optimally holds station swimming against the current at its (constrained) optimal
growth speed. If the maximum current velocity does not exceed the constrained maximum growth speed
(possibility iia—b), the optimal velocities depend on the sighzg(, (“Upax X W, ) + o, . The optimal behavior
is characterized by station holding (in i and iib) or upstream migration in slack current at a swimming velocity that
does not exceed the maximum growth speed.

The optimal strategy can be more complicated when the switching fulction  is positive

than when it is negative. When the switching function is negative, the optimal behavior is
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always upstream migration. When positive, the optimal strategy may involve upstream
migration or station holdinglepending on the value of the maximum current speed
relative to the maximum growth velocityhen the maximum current speed exceeds the
maximum growth speed, then the fish holds station, swimming against the current at a rate
that maximizes growth. Here, the fish has the best of both worlds: it minimizes its
expected risk of predation (its predator encounter rate is smallest when stationary), and

maximizes growth.

When the maximum current velocity drops below the maximum feeding speed it is
impossible for a fish to have the best of both worlds. For if it minimizes predation risk by
remaining stationary (with respect to the substrate), its growth is not maximal, and
conversely, if its growth is maximalé., it is swimming at its maximum growth speed),

then its predator encounter rate is not minimal since it is not stationary. The fish must
choose a swimming velocity that balances the feeding and depredation tradeoffs, and this
means that the optimal strategy will consist of swimming more slowly than the optimal

growth speed, holding station or moving upstream, always in the most rapid current.

6.3.2.2.3 Switching function zerod, = 0)
When the predation gradietk , equals , the switching function is zero, and the

optimal swimming velocity is found by maximizing the Hamiltonian over the region

0 if v>0
U= [0, upl if V<—Ujy .
O [0,-v] if ~Ups,svsO
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Unlessu,,., = 0, this maximization problem does not yield a unique current and
swimming velocity (TABLE 6.7). Rather, there are infinitely many current velocities
maximizing the Hamiltonian. One consistent result, however, is that the optimal
swimming speed is alwayamin (v, V,.) . This case may correspond to a singular path

(compare tas, = 0 ).

TABLE 6.10 Optimal swimming velocities when the switching funct@sis zero.

Possibility u,,, Condition Optimal Velocities
i Vg < Unay u*= [0,v,] andv* = -v,,or
i Unax < Vg u*= [0, Uy, andv* = -y,

As in case 2, the optimal velocities depend on the maximum current velocity relative to the constrained maximum
growth velocity. Unlessi, ., = 0 , the optimal current velocity is not uniguely determined, while the swimming
velocity is always equal to the negative of the constrained maximum growth speed. Notice that it is always
optimal to swim against the current, and that since the migration velocity is always nonpositive, migration is
allowed only in the upstream direction.

6.3.3 The canonical equations and optimal control parameters

The next step in the maximum principle is to develop a system of simultaneous differential
equations called the canonical equations, whose solution gives the optimal state and co-
state paths. The canonical equations consist of a set of four ordinary differential equations
that govern the change in the optimal state variables and the co-state variables over time.

To begin with, define
H* = H‘(U‘V):(u*’v*)j (637)

so thatH* is a function that does not include the control variable arguments—it is a

function ofx, w, A, A, andt alone.
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According to the maximum principle, the co-state variables satisfy
A, = -H,* and (6.38)
A, = —H*; (6.39)

and the optimal state variables must satisfy the original state equations evaluated at

andv* , namely

X = u* +v* and (6.40)
W = gl.. (6.41)
Recall that, in general, the policy functiong,, v* , depenct,om A, A, t . Therefore,

equations (6.38)—(6.41) represent a system of four simultaneous differential equations in 4
variables, without explicit dependencewn and . These are the canonical equations. In
the next section the boundary conditions will be specified, making it possible to solve

these equations.

6.3.4 Transversality conditions

So far, only three boundary conditions are available for the canonical equations:

x(t) = 0,w(t) = wy, andx(t*) = a;and furthermore*,t.* , and are
unknown. It is therefore impossible to solve the system of equations without another
boundary condition, and the valuestgf, t.* ,arfd . All of this information is supplied

by thetransversality conditions

A () = O (@, +H)| . =0,®,

. =0, and®,

et - . =0, (642
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where | assume th&t <t .* <t* i d. ocean residence and estuarine residence time are
e S

not zero).

To summarize, the necessary conditions consist of a total of 4 canonical equations with
three boundary conditions specified at the outset, and 4 transversality conditions. These 4
transversality conditions supply the 4th condition needed to solve the canonical equations
as well as a set of 3 equations for determining the optimal values of the 3 control
parameterst*,t.,* , ang* . The canonical equations, along with their boundary
conditions, comprise @vo point boundary value problewhich can, in theory, be solved

using some numerical routine. Two popular methods for solving this type of problem are

theshooting methodnd therelaxation methodPresst al, 1988).

6.4 Summary

The optimal control problem was presented in a form that allowed application of the
maximum principle. To avoid the need to resort to nonsmooth techniques, dependence of
the control variable constraints on the state variables was omitted. In addition, for
simplicity, the dependence of predator density on current velocity was also omitted. Once
the problem was specified, the maximum principle was applied: the Hamiltonian was
maximized with respect to the control variables to obtain the policy functions, the co-state
and state equations were defined, and the transversality conditions were developed to
supply enough boundary conditions to provide a boundary condition for the canonical

equations and to determine the optimal control parameters.

A remarkable amount of information about the optimal controls was gleaned by simply

maximizing the Hamiltonian (FIGURE 6.1). One important result is that optimal behavior
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is largely controlled by the sign of the switching function (defined,as  Wher , and

o, otherwise).

First focussing on the case where a marginal increase in downstream displacement is
beneficial to fitnesd.€., A, > 0), the sign of the switching functian,  is informative.

When it is positive, active downstream migration is optimal: the fish swims downstream in
the swiftest current, at a speed that exceeds the maximum growth speed (if the maximum

swimming speed permits).

When the switching functiorg, , is negative, there are three possibilities: (i) if the
maximum current velocity exceeds the maximum growth speed, then the fish holds
station, migrating against the current, swimming at its maximum growth speed,; (ii)
otherwise, the juvenile either (a) migrates upstream, swimming in the most rapid current,
and at a swimming velocity that exceeds the maximum current velocity, but is less than the
optimal growth velocity or (b) swims downstream in a current of zero velocity, and at a
swimming velocity that does not exceed the optimal growth velocity. Option (a) is optimal
when the maximum current velocity is close to zero (relative to the maximum growth

velocity), and option (b) is optimal when it is close to the maximum growth velocity.

When the switching functioo, is zero, maximizing the Hamiltonian gives more limited
knowledge of the optimal controls. If the maximum current velocity exceeds the
maximum growth speed, then one of two behaviors is optimal: (a) the fish swims against
the current at its maximum growth speed and in a current velocity at least as great as its
maximum growth speed; (b) the fish swims downstream in a current velocity not

exceeding its maximum current velocity, with a swimming speed equal to its maximum
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growth speed. Notice that, unlags,, = 0 , the optimal current velocity is not uniquely
determined, but is only known to lie in an interval; the swimrspeed however, always
equals the maximum growth speed. If the maximum current velocity is less than the

maximum growth speed, then option (a) is optimal.

Focussing next on the case where the co-state variable associated with displacement is
nonpositive, the sign switching functiay  largely characterizes the optimal behaviors.
When it is negative, a fish displays upstream migration behavior, swimming in slack
current or near the shora € 0 ), while swimming upstream at a speed that exceeds the

maximum growth speed (if the maximum swimming speed allows).

When the switching functiog, is positive, a fish shows feeding and predator avoidance
behavior, but there are actually three possible behaviors based on the maximum current
velocity. (a) If the optimal current velocity exceeds the maximum growth velocity, the fish
holds station, swimming against the current at their maximum growth speed. Otherwise,
the fish swims in the swiftest current either (b) holding station, or (c) migrating upstream
with a swimming speed between the maximum growth speed and the maximum current

velocity. Only one of these three behaviors is optimal at any given time.

When the switching functioa, is zero, a fish displays a behavior intermediate to when
0, is positive or negative. Unless,,, = 0 , the optimal behavior is not actually uniquely
determined by this case, and further analysis of the canonical equations is needed.
However, it is known that the fish swims upstream at its constrained maximum growth

velocity, swimming in any current from O min(i/g, Unay)
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This analysis shows that when the co-state variable associated with displacement is

nonpositive, no downstream migration strategy is ever optimal.

6.5 Discussion

Probably the most useful result of this section is that behaviors are largely determined by
the switching functions and the difference between the maximum current velocity and the
maximum growth velocity. When the co-state variable associated with displacement is
positive, the switching function is, , and represents difference between (i) the marginal
change in future fitness for a marginal increase in downstream displacement and (ii) the
probability of death over a marginal increase in downstream displacement. The analysis
shows that when the marginal value of and increment in downstream position exceeds the
marginal cost of predation over that distance increment, then the juvenile optimally
migrates downstream. This corresponds to the case where the switching fanction is
positive. The optimal behavior, at this point, is driven more by selection pressure to
migrate to the ocean than pressure to avoid predators or feed. Because, during active

migration, predation risk is not minimal and growth is not maximal (uMgss v, ).

What happens when the switching function  is negative? In this case, the fish is averse
to active migration. Although the fistill move under low maximum current velocity
conditions, behavior is driven more by feeding and predator avoidance. Movements when
0, is negative are more properly referred t@ajagetitive movemen{Southwood, 1962)

rather than migration. When maximum current velocity exceeds maximum growth speed,
then the fish enjoys the best of both worlds—minimal predation and maximum growth—

by holding station and swimming against the current at its optimal growth speed. If, on the
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other hand, maximum current velocity is less than the maximum growth speed, the fish
must make the best of a bad situation and some unexpected behavior ensues. For example,
it is possible for the fish to move upstream! This occurs when the benefit to growth during
the upstream movement (in the form of reduced predation risk in the future and other size-
related benefits), exceeds the cost of greater predator encounters during this upstream
movement. The other possibility (when maximum current velocity is less than the
maximum growth speed) is that the fish moves downstream in a river current afezero (
near shore) with a swimming velocity less than is maximum growth speed. Here the fish
accepts a higher predator encounter riage (nigration velocity is not zero), for the sake
of increased growth rate. Another benefit is that less migration distance will need to be

covered in the future.

When the switching functiog, is zero, maximizing the Hamiltonian produces less
information on the optimal migration strategy. However it does appear to be an
intermediate strategyying between the case where migration is the driving force of
behavior, and the case where growth and predator avoidance are the driving forces. This
case must be explored further by considering the dynamics of the canonical equations. A
singular solution may show a smooth transition between growth and predator avoidance-
driven behavior, and active migration behavior. If, on the other hand, the switching
function g, is zero only for an instant, there will be a abrupt change from one behavior to
the other. This issue and others will be explored in later chapters, in which emphasis is

placed on obtaining a numerical solution to the control problem.

The above discussion assumed that the co-state variable associated with displacement was

positive. When it is nonpositive, the switching functiowjs rather than , and can be
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interpreted as the difference between (i) the probability of death over a marginal increase
in upstream displacement and (ii) the marginal change in future fitness for a marginal
increase in upstream displacement. When this quantity is positive, cost of migration is too
great and station holding is optimal; when it is negative, the benefit of upstream movement
is high enough that the fish migrates upstream. The case where it is zero represents an
intermediate strategy, where neither upstream movement or station holding behavior is

better. In this case, the possibility of a singular solution must be explored.

A Umax ™~ \79

IV (-,-) | (+,+)
station holding d.s migration

- >

01

m (-,-) I (+,-)
possible appetitive d.s migration
movements (u.s or d.s
ocean-type chinook in | stream-type chinook in
impounded mainstem ¥ impounded mainstem

FIGURE 6.3 The juvenile chinook behavior space is partitioned into four quadrants
defined by the sign of the switching functiop(assuming\; > 0) and the difference
between the maximum current velocity and maximum growth speed. Behavior in
guadrants | and Il is characterized as downstream migration; Ill and IV, as predator
avoidance and feeding behavior which involves station holding (lll or possibly IV) or
appetitive movements (IV only).
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How do these model-derived behaviors compare with observed juvenile chinook
movements? Observations of movements on the Snake River show that during the
“migration” season, stream-type chinook move more swiftly through the Lower Granite
reservoir than do ocean-type chinook. Zabel (1994) estimated an average migration rate of
5.22 (km/d) for 17 release groups of stream-type chinook, and 1.41 (km/d) for ocean-type
chinook (only 1 release group) during the 1991 season. My optimization results suggest
that ocean-type chinook migrate more slowly because their movements are appetitive,
characterized by a negative switching functmn  and low current velocity. These ocean-
type chinook rear in the mainstem of the Snake River, subject to low current velocities of
impounded waters where station-holding feeding behavior is suboptimal because delivery
rate of food is low, making appetitive movement best. In contrast, stream-type chinook
rear in tributaries of the Snake Riverd, the Salmon and Clearwater Rivers), and when
they reach the mainstem of the Snake River are moving more quickly downstream. This
suggests that these fish have a positive switching funation  in the mainstem (FIGURE

6.3).



CHAPTER 7 EFFECTS OF FLUCTUATING
LIGHT, TURBIDITY, AND
CURRENT VELOCITY ON
MIGRATION BEHAVIOR

7.1 Introduction

Patterns of migration exhibited in salmon populations appear to be driven in part by
fluctuations of light intensity. Migration has observed to occur mostly at night, or in some
cases during freshets when turbidity is high. High turbidity can produce nighttime
conditions and stimulate a “nighttime” migration response (Junge & Oakley, 1966). Once
the juvenile is in a physiological state which predisposes it to downstream migratjon (

its smolt development is sufficient), a change in light can provide the environmental cue

for migration to begin.

None of the previous chapters have dealt with fluctuating light intensity explicitly.
However, if | can establish a link between the switching function, discussed in the
previous chapter, and light intensity, then its influence can be quantified, because behavior
is largely characterized by the switching function. Recall that when the switching function
is negative, an active migration behavior is optimal, and when positive, a predator
avoidance and feeding behavior is optimal. The switching function is comprised of three

elements, the co-state variable associated with downstream displacement, the predator
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density, and the capture probability. Fluctuating light levels can influence the capture

probability, providing the link to the switching function | seek.

My approach to understanding the influence of fluctuating light levels is to compare
solutions in the absence of fluctuating light levels-aatonomouscase, to solutions in

its presence. This represents a controlled experiment—not on nature, but on the dynamic
optimization model. What results do | expect? Just as seasonality modulated the fithess
function in CHAPTER 4, making certain times of the year better for migration, | expect
fluctuating light and current velocity will modulate the fitness functional of this chapter,
making certain times of the day and year better for migration than others. So that the
effects are not confounded, | eliminate time varying factors not related to current velocity
or light, and | make some other simplifying assumptions for ease of model analysis

(TABLE 7.2).

1. The termautonomouss used to indicate that the underlying canonical equations are not explicit func-
tions of time.
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TABLE 7.1 Further model simplificatiorfs.

Assumption

The control parameter, amd are treated as known

Maximum swimming velocityy,,., , IS constant

Predator densityd , and predator search velo€ity, , are constant

Food density is constant

t: (Uhaxt Ve = @, allowing sufficient time to journey to the estuary.

The maximum current velocity exceeds the maximum swimming veti’ocity

Estuarine mortality rate is equal to ocean mortality rate and are constant

aThe simplifications are in addition to those of the previous chapter.

b This simplifies the problem of maximizing the Hamiltonian (see FIGURE 6.1a).

7.2 An autonomous case

The simplest case | consider is an autonomous one that removes explicit time dependence
of the model parameters. In this case the influence of light and current velocity
fluctuations are deliberately omitted, so that their influence can be quantified later by way
of comparison. This represents the “control” simulation. The assumptions for the

autonomous case are summarized in TABLE 7.2.
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TABLE 7.2 Model assumptions (autonomous case with fixed estuary entry
time) 2

Assumption

The maximum current velocity is constant
The growth function depends only on weight (not on time)
Predation rate depends only on weight (not on time)

Time of estuary entry; , is treated as known

aThe third and fourth assumptions will be relaxed when fluctuating light levels are considered (See “Light
sensitive predation” on page 154)

TABLE 7.3 Optimal control problem (autonomous case with fixed estuary entry time).

Maximize: ! o )
—J’ (lu+v +Q)Bk(w) dt +d (w(ty)) (objective functional)
u, v 0
Subjectto: x =u+v (displacement equation)
w=g(v,w (weight equation)
Osus U, (current velocity constraint)
IVl < Vi ax (swimming velocity constraint)

7.2.1 Optimal solution types

By using the maximum principle—maximizing the Hamiltonian and building the

canonical equations— it is possible to characterize all solutions to the autonomous case on
the based simply on the initial sign of the growth function and the initial sign of the

switching function (See APPENDIX C). The maximized Hamiltonian and the canonical
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equations are easily determined by the techniques of the last chapter, and are summarized

in TABLE 7.3.

TABLE 7.4 Maximum principle applied to the autonomous case.

—Maximized Hamiltonian—
{ =BTk (W) + A, (v W) if 6<0
H* =

) = (Umax* V+ Q) OK(W) + A, (Ut V) + A0 (V, W) b ifo>0

—Canonical Equations—

0 if 6<0
X. - ~

UnaxtV if >0

9(vy ) it 5<0
w = _

g(V, W) |f g>0
A = 0
: { _}\zgw(vg' w) +esz(W) if 0<0
A, =

i —)\zgw(f/, W) + (U gtV + ) OK,, (W) if 0>0

—Boundary Conditions—
x(ty) =0, x(t) =a,w(ty) =wy, A, () = dd/dw

aThe switching function can be zero for only an instant (APPENDIX C), and therefore the case
whereo = 0 is omitted.

by is defined in CHAPTER 6.
For the autonomous optimal control problem presented above, one of the following three

behaviors is optimal:

S1. Initially, the juvenile holds its stationxat= 0 , swimming against the current at its
optimal growth speed. At some critical weight, it begins migrating downstream,
swimming in the swiftest current, and actively swimming downstream at a speed
greater than its optimal growth speed. The juvenile does not xeach t; until

(assumed fixed).
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S2. The juvenile begins migrating immediately after emergence, swimming at a speed
greater than or equal to its optimal growth speed, and in the swiftest current. It
ceases migration only when= a . If the juvenile reaches bafore ,then it

holds its station aa , swimming against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims
downstream at its optimal growth speed, or against the current at its optimal

growth speed. Migration upstream is not permitted.

(a) Delayed Migration (b) Immediate Migration

Downstream ————
Estuary

Time Time

Spawning Grounds

FIGURE 7.1 Optimal strategy types. (a) The juvenile initially holds station until it
grows above a critical weight, then continually migrates downstream until it reaches
the estuary &t (strategy S1). (b) The juvenile begins downstream migration
immediately, ceasing only when it reaches the estuary; it then holds statidn until
(strategy S2).

The three strategies S1, S2, and S3 were discovered by considering the initial sign of the

growth function evaluated at the maximum growth speggi,) , and the initial sign of
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the switching function (TABLE 7.5). Be aware that certain sign combinations are

impossible.

TABLE 7.5 Optimal strategies based on the initial sign of the growth and switching
functions.

o (W) <0 o(w,) =0 o (wp) >0
g (vy (Wp), w,) <0 Impossible Impossible S2
g(v,(Wo),W,) =0 Impossible S3or$2 S2
g (vy (Wp),w,) >0 S1 S2 S2

433 applies whe (U + vg(Wo)) >a , S2 otherwise.

max

Strategy S1, when examined in a more general light, represents a strategy commonly
found in juvenile chinook populations. The fish initially demonstrate a feeding and
predator avoidance behavior, followed by a rapid downstream migration. The

optimization model predicts that this strategy will occur when growth potential is good

and the estuary entry time is not chosen too small. Strategy S2 is best when growth is poor,

(i.e, g (v, (W), wy) <0) or when estuary entry time is small.

It is important to recognize the implications of fixing time of estuary entry in the
autonomous formulation above. | assumed that the fish must choose a swimming velocity
and current velocity schedule that would place them in the estuary at a pre-specified time,
t;. Itis not immediately clear thattf is allowed to vary, that the three strategies, S1, S2,
S3 represent a comprehensive list of optimal strategy types. The results of this section do
generalize to the case whdye s free, however, because the above resultsaapply to

givent,—including the optimal one.
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TABLE 7.6 Functions, parameters, and their estimates.

Parameter Description Parameter  Units Estimate Data or Parameter
or Source
Relationship
Metabolic cost M (t) d&‘l see reference (chinook) Hewitt & Johnson (1992)
oxycalorific equivalent g cal Dmg‘l 3.42 Webb (1974)
calories to grams c grcal*  1.6949x 10° White & Li (1985)
conversion factor
handling time h (w) stcal* 18w % Ware (1978)
reaction field y (W) m 0.0 /it Ware (1978)
food density p calim?  1.15
net food conversion T none 0.7 Brett & Groves (1979)
efficiency
swimming speed v ms! .6 Brett (1965)
migration distance a km 150
current speed u mst 1.0
initial weight A g 3.38
capture probability k(w, 1) none Qyw?
predator density 0 kit 15
predator search velocity kmyr‘l 252.288
ocean growth rate g, (w) @/r‘1 25.870v*> - 0.7888v Parker & Larkin (1959)
ocean mortality rate 1 (w) gt 3.6915v 767 Ricker (1976)
fecundity m(w) eggs 48.940°°%8 Healey & Heard (1984)
spawning time t, yr 4.0

7.3 Light sensitive predation

The strategies derived under the assumption of autonomous canonical equations do not
show the influence of fluctuating light levels as seen in the cycle of day and night and in
situations of high turbidity. Given that predation is influenced by light levels, for example
where predators are largely visual predators, light level may influence the capture

probability, and consequently the switching function, making migration during low light
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levels best. This would mean a flip-flop between an active migration strategy and a
feeding and predator avoidance behavior: when light levels fall the active migration
behavior is optimal, and when they rise again feeding and predator avoidance behavior is
best. This intuitive insight is not complete, as the simulations will show, because
migration timing also depends on the fish size. Premature downstream movement, before
the fish is of sufficient size to adequately defend against predators in the estuary, or along

the migration route is undesirable.

7.3.1 Numerical example (estuary entry time fixed)
This switching behavior can be easily illustrated by specifying a light sensitive capture

probability function. For example,
1
k(w, 9 = () (1), (7.1)

where the functiof (t) represents the influence of light intensity on the capture
probability function. As light intensity decreases, it is assumediliat decreases as
well, so that the capture probability diminishes with nighttime or during a period of

increased turbidity. For the sake of illustration, let

Q) = { 1-k(16) (t-72°(73-1)° if 72<t<73 (7.2)
1 otherwise '
so that between 100 and 101 days after emergence, light levels drop due to high turbidity,
decreasing the capture probability by a maximum of*<1Q%. On all other days, no

decrease in predation rate is assumed to be the result of light fluctuation, but rather as a
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result of increasing size. Although the daily fluctuations in light due to the earth’s rotation

are not explicitly treated here, the example will generalize.

Using the results obtained by maximizing the Hamiltonian (See “The Hamiltonian” on
page 137.), and applying the shooting method to solve the resulting two-point boundary
problem represented by the canonical equations and their boundary conditions, | obtain
numerical solutions. The time of estuary entyy, is allowed to vary as a control parameter,
and its optimal value is determined by using a numerical function maximizing algorithm

known as Brent's Method (Brent, 1973; Presal, 1988).

7.3.1.1 Singular path?
Another important detail is that, in this example, the switching function cannot be zero for

more than an instant of time, and therefore the prodiees not admit a singular path. |

demonstrate this by showing that if the switching function is zero over an interval, then the
capture probability must also be constant over the same interval, leading to a

contradiction.

To this end, suppose that the switching function is zero over an interval of time, . Then

sinceA, is constant over the time horizon,
o = -8k = -0 (k,Ww* +k) = 0overl, (7.3)

which further implies that

_k ' .

wr* =
Ku 0 otherwise
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In the example, however, whenever the switching function is g€re;0 , since
V¥ =y, andg (v, w) >0 for all feasible values @f . Therefdre can only lie in the

interval (72.5 73 .

Vg W* (1))
w* (t)
identical overl . However, there is nothing that links these two functions together (when

If a singular path exists, then the functi £93% 9) would have to be

the switching function is zero)—they were chosen independently, and a simple plot shows
that for any value oiv where they agree, they diverge after a step forward in time. The
two functions can only agree for an instant of time, ruling out the possibility of a singular

path.

7.3.1.2 The optimal strategy

As the fish grows, the capture probability diminishes, since it is inversely related to fish
weight, making the quantit@k (w, t) (I call it tredfective predator densjtygradually
smaller. When the turbidity increases, the effective predator density decreases rapidly.
When it falls below the value of the co-state variable associated with displacement, the
switching function rises to a positive value, and active migration begins (See “A positive
switching function” on page 141.). After the turbidity subsides, the switching function
falls negative once again and migration ceases in favor of a feeding and predator
avoidance behavior.€., holding station, and feeding at the maximum growth velocity).
Once the fish’s growth drives the switching function positive once again, the fish migrates

to the estuary (FIGURE 7.2 & FIGURE 7.2).
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FIGURE 7.2 Effective predator density diminishes due to increased weight of the fish
and during the onset of high turbidity. As turbidity subsides, the switching function

falls negative and the fish returns to feeding and predator avoidance behavior. As the
fish continues to growth, the switching function rises again to a positive value, and the
fish resumes active migration. This interrupted migration strategy occurs when the time
of estuary entryt; , is fixed.
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FIGURE 7.3 Downstream displacement plotted as a function of weight. The first
increment in displacement is caused by an increase in turbidity, the second by the
natural decrease in capture probability due to larger size. When the fish is not migrating
downstream, it is holding station showing a feeding and predator avoidance behavior.
There is no “critical weightper seat which migration begins. Rather, active migration
results from a combination of factors both external and internal—increased turbidity
and increased weight.

Without this time fluctuation in the capture probability (or other model parameters and
functions), the autonomous case prevails, interrupted migration behavior does not occur
—there is simply one switch from feeding and predator avoidance to an uninterrupted,
active migration. When fluctuations in capture probability occur, the dips represent
windows of active migration opportunity during which predation is lower. By taking

advantage of these opportunities, a migrant increases its expected freshwater survival.
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There is a catch, however, because in this example, | assumed that the time of arrival in
the estuary was fixed, and was not free to vary in the optimization. As this next example
shows, when time is allowed to vary, optimal strategies can tend to either ignore the period
of lower capture probability (my not migrating) or migrate during the period and continue
to migrate to the estuary once it subsides—in other words an interrupted migration does

not occur.

7.3.2 Numerical example (estuary entry time free)

In the previous example, | assumed that the time of estuary entry was “fixed”, and
discovered an instance when an interrupted migration strategy was optimal. However, as
we will discover in this section, this does not mean that this type of strategy is optimal
when time of estuary entry is free to vary. In fact, for the functions and parameters used in
the previous example (TABLE 7.6), the interrupted migration behavior does not appear to
be optimal, regardless of the timing, duration, and magnitude in the decrease in capture

probability.

When time of estuary entry is free to vary, there are just two optimal reactions to a
decrease in capture probability: it should be ignored (the fish should continue to hold
station), or it should stimulate a migration that does not cease until the fish has arrived in
the ocean. This is clear from a plot of fitness as a function of estuary entry time. Generally,
there are two humps in this curve, each corresponding to a candidate for the optimal time
of estuary entry. One hump is due to the period of increased turbidity, and the other to the

decreased capture probability due to fish growth (FIGURE 7.4).
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FIGURE 7.4 Influence of turbidity on optimal time of estuary entry. There are two
maxima of the fithess curve as a function of estuary entry time, the one on the left,
corresponding to the period or turbidity, and the other corresponding to decreased
capture probability due to natural growth. As the turbidity intensity parameter,
increases from 0, the global maximum switches ftm 82.48 d to the maxima
corresponding to an increase in turbidjty= 73.18 d. This fitness curve is bimodal,

and estuary entry times lying between the two modes are suboptimal. This leads to two
possible optimal behavior (usually only one of which is truly optimal): either ignore the
increased turbidity altogether, or initiate an uninterrupted seaward migration.
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FIGURE 7.5 The co-state variable corresponding to downstream displacement
increases in response to a sufficient increase in turbidity intensity param@étek,

increases from O to .0055 (representing a .55% decrease in the capture probability), the
co-state variable varies from = .2670 to\; = .2773, making the switching function
positive at an earlier date (8.3 days earlier), and therefore making an earlier migration
optimal.

One surprising feature of the sensitivity of migration timing to a period of increased
turbidity, is that it may take only a small change in capture probability to induce a much
earlier migration. For example, FIGURE 7.5 shows that a .55% decrease in the capture
probability over a one day period can induce migration. In the absence of increased
turbidity, the capture probability must drop to .2670 before migration begins, but in its
presence, the fish optimally migrate when the capture probability does not fall below

.2773. Why should migration be so attractive during this minuscule change in capture
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probability? (This is especially puzzling since the capture probability does not even come
close to the low level necessary for migration in the absence of increased turbidity.) The
answer is that earlier migration is attractive not only because of reduced capture
probability, but also because of reduced exposure time to predators in freshwater, and
longer growth opportunity in the ocean. Juveniles migrating early during elevated
turbidity, might suffer greater mortality enroute to the ocean than a juvenile migrating
later at a larger size, but suffer lower overall freshwater mortality because of a shorter
freshwater residence time, and experience greater growth over its lifetime. This argument
hinges on the assumption that an earlier migration is not prohibited by a large decrease in
ocean survival for the smaller migrant. Otherwise, a larger decrease in the capture

probability might be necessary to make earlier migration optimal.

7.3.2.1 Note on applying the maximum principle

When seasonal or daily fluctuations of model parameters are allowed, the fitness curve is
not necessarily a simple concave function with respect to the estuary entiy time, , and the
transversality conditioid + CDIf = 0 canyield spurious solutions. In fact, for the example
presented above, there are 3 solutiortd to®, = 0 —two maxima and a minimum, only
one of which is a global maximum—namey, = 73.18 , which all correspond to critical
points of the fitness curve (FIGURE 7.4). Therefore, | take the cautious approach of first
plotting the fitness curve as a functiontof , (as in FIGURE 7.4) to avoid local maxima
and minima, and to obtain a bracket on the optimal estuary entryttfme, . Once the
global solution is bracketed, | apply an algorithm that uses both inverse parabolic

interpolation and golden section search—Brent's method (Pteds1989).
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7.4 Fluctuating current velocity
During a freshet, when capture probability might diminish due to higher turbidity, the
maximum current velocity increases. This occurs when there is a greater flow of water
through a restricted cross-sectional area. In Davis (1981) all major salmonid outmigration
occurred during a phase of a spring freshet, many other studies confirm that increases in
flow correspond to higher catches of migrants (Mains & Smith, 1964; Raymond, 1968;
Reimers, 1968; Salo, 1969; Wetherall, 1970; Stebet, 1973; Becker, 1973b;
Anonymous, 1976; Kjelsoet al, 1982; Hopkins & Unwin, 1987). As demonstrated
earlier, (See “Light sensitive predation” on page 154) when the freshet grows in strength,
turbidity can increase, making outmigration favorable. At the same time, there may be a

benefit due to increased current velocity.

If the juvenile is in a sufficiently ready state to migrate to the odemnt(is approaching

the point at which the benefits of migration (better ocean growth) outweigh the costs
(mortality), then migration during a freshet can serve to decrease migration time,
decreasing the overall exposure time to predators on its seaward journey. To test this
hypothesis in simulation, | allow fluctuations in the maximum current velocity over time,
keeping all else equal (even turbidity levels), and like the previous section, gauge the

simulated influence of increased current velocity on migration behavior.
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7.4.1 Numerical example

| simulate the change in maximum current velocity through the equation

t-t .
Unay (1) = chrrem(r_tll) (during a freshet, <t<t, ), (7.1)

andu,,.(t) = 1.0 otherwise.

whereQ_ (&) = 1+k (16) (§)°(1-&)°. In this example, there will be a total of
four consecutive freshets each lasting one day, starting at day 71,74,77, and 80
respectively. During each freshet, the current velocity increas&8yy k %. For this
example, | assume that the maximum current velocity doubles over the freshet, so that

K = 1. For the ‘control’ simulation, the current velocity is held constant at 1.0.

The simulations show that if the freshet is of sufficient duration and intensity, and is timed
when the juvenile is in a sufficient state of readiness felatively large so that its

capture probability is relatively small), then the juveniles optimally migrate with freshets
(FIGURE 7.6). This occurs without the additional benefit of high turbidity, because the
increased maximum current velocity associated with a freshet, reduces the travel time to
the estuary, in turn reducing the time at risk to predators during migration.

Mathematically, it occurs because a freshet timed prior to the optimal time of estuary entry
in the absence of a freshet, serves to increase the co-state variable associated with
downstream displacememt, —a quantity interpreted as the marginal increase brought by
an increase in downstream displacement. This means that the switching function turns

positive sooner, making migration begin sooner (FIGURE 7.7).
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FIGURE 7.6 The influence of freshets on the optimal time of estuary entry. (b) Of the
four freshets of equal intensity starting at 71, 74, 77, and 80 days respectively, those
timed closest to the optimal time of estuary entry in the absence of fréghbts/e

the most influences* represents a good measure of the approximate time of migration
readiness. (a) Freshets that occur too early (relatit® o not influence time of

estuary entry (sei@), but those that do not occur to early, do have influencélsee
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FIGURE 7.7 A well timed freshet can increase the co-state variable associated with

displacement),, making the switching function zero earlier, and therefore leading to
earlier seaward migration.

The two examples of fluctuating light levels and maximum current velocity, taken
together, demonstrate that there can be two advantages of migrating with freshets: reduced
time at risk (due to high current velocity), and lower average capture probability (due to

high turbidity).

7.5 Summary
In the first section of this chapter, | developed an exhaustive list of optimal strategy types
when time fluctuations in model parameters were ignored (the autonomous case). These

strategies were then compared to the optimal strategies in the case where light levels and
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maximum current velocities were allowed to fluctuate. This allowed me to gauge the
influence of freshets and nighttime on migration behavior. In the autonomous case, one of

three behaviors was found to be optimal:

S1. Initially, the juvenile holds station, swimming against the current at its optimal
growth speed. At some critical weight, it begins migrating downstream, swimming
in the swiftest current, and actively swimming downstream at a speed greater than
its optimal growth speed. The juvenile does not reach the estuary; until  (assumed

fixed).

S2. The juvenile begins migrating immediately after emergence, swimming at a speed
greater than or equal to its optimal growth speed, and in the swiftest current. It
ceases migration only it is about to reach the estuary. If the juvenile reaches the
estuary before; , then it holds station prior to entering the estuary, swimming

against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims
downstream at its optimal growth speed, or against the current at its optimal

growth speed, and migration upstream is not permitted.

When time of estuary entry was fixed, it was possible for interrupted migrations,
characterized by downstream movement during periods of relatively low capture
probability, and station holding when it is higher. When time of estuary entry was allowed
to vary in the optimization problem, interrupted migration ceased to be optimal, and the
optimal strategy was S1—initial station holding followed by an unceasing seaward

migration. In the case of fluctuating capture probability or maximum current velocity, the
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reactions of the fish are similar, and exemplified by the optimal reaction to a freshet: either
the freshet should be completely ignored (station holding), or the fish should migrate with
the freshet, moving nonstop toward the estuary, migrating even after the freshet subsides.
Fish ignore a freshet if it is not of sufficient strength or duration, or if it is not timed during
a large enough sized., near the time marking the onset of migration in the absence of a

freshet.)

7.6 Discussion

The methodology of this chapter follows a that of a controlled experiment, conducted not
on nature, but on the dynamic optimality model. The questions posed— “What are the
effects of fluctuation daylight? Fluctuating maximum current velocity?”, are addressed by
first analyzing the model in the absence of these fluctuations (the control), and then in their
presence (the treatment). In the autonomous case, there were three strategy types found,
with the first— station holding followed by an unceasing migration initiated at a critical
weight—optimal whenever growth is initially positive (when maximized/by ), and the

time of optimal estuary entry is sufficiently greater théi u,,,, + Vinay

Comparing the optimal strategies in the case of fluctuation light levels or current velocity,
shows that there are certain windows of opportunity created by lower capture probability
(in the case of low light levels) and shorter travel time to the estuary (in the case of current
velocity). One thing made clear by the simulations, however, is that migration during
these “windows of opportunity” is optimal only if they offer either sufficiently shorter

travel time, or capture probability, and if they are properly timed. Those windows of

opportunity, timed prematurely are optimally ignored by the fish. In contrast, when it is
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timed at a state of migration readiness (in this case, sufficiently near the optimal migration
timing in the absence of these windows of opportunity), then the fish optimally migrate
during the window of opportunity. | believe this result is crucial, and bears on the proper
management of salmon stocks: if we are to increase current velocity in the rivers to aide
fish during migration, this increase must be well-timed, synced with the physiological

development, or the state of readiness to migrate.

Another result of the model (at least for the calibration used in the numerical examples), is
that interrupted migrations do not occur. In fact, the only way | was able to induce a
interrupted migration was by fixing the time of estuary entry. This is only a reasonable
assumption if the fitness curve peeks at the fixed estuary entryitime, , and is very steep in
a neighborhood of; . This was not what | expected, but after some thought, does make
sense, in terms of the model used. Since spatial homogeneity was assumed, there are not
special feeding spots that juveniles should migrate to, stop and feed, and continue on their
way. Furthermore, fish are assumed to have perfect knowledge of the duration, intensity,
and timing of all fluctuations in current velocity, and future growth, disallowing risk-

taking behavior such as migrating with and early freshet rather than holding out for later
freshet that might not materialize. To capture these types of strategies, a stochastic element

and/or spatial heterogeneity must be added.



CHAPTER 8 SUMMARY AND DISCUSSION

8.1 Overview

In this work | focused on the migration behavior of salmon using a behavioral ecology
approach. Specifically, | used optimization modelling to show how selective patterns
shape geographical patterns of age at migration, seasonal and diurnal migration timing,
and current velocity selection. The goal was to suggest explanations or hypothesis of
migration behavior that could in turn possibly suggest new experiments and lead to further
insight into why salmon behave as they do. In developing the models, | strove for

parsimony and respect for the underlying salmon biology.

Like other models of habitat shifts (in this case salmon are shifting from a freshwater to an
ocean habitat), | considered the growth and predation risk of both environments, but | also
included the special cost of migration itself— in terms of energetic expenditure and
predation risk enroute to the ocean. By approaching the problems using optimal control
theory, it was possible to characterize optimal current velocity and swimming velocity
choices based on the signs of the “switching functions” and the maximum current velocity
relative to the swimming speed at which growth is maximal. Numerical and analytic
solutions to the static optimization models (used in earlier chapters) led to insights into the
selective pressures associated with of migration distance and growth opportunity and to
insights about the selective pressures associated with daily and seasonal fluctuations in

light and temperature. The selective pressures associated with each of these factors
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influence age at migration as well as timing of migration, and the models are able to

guantify the “sign” of the influence.

Analyzing salmon migration from this evolutionary perspective, provides new insight into
behavior and aids in understanding the proximate mechanisms that determine behavior
and the variation in life history types they produce. Ultimately, it is my hope that the
results or indirect results (results due to further modelling or experiments) can be used to

help manage salmon stocks properly.

8.2 Summary by chapter

Chapter 1 contains introductory material: a literature review, problems and questions that
the research addresses, justification for a behavioral ecology approach to the problems and
guestions addressed, and the evidence for spatial and temporal patterns of chinook

migration behavior.

In Chapter 2 | develop and analyze a simple heuristic model of age at migration, that is
designed to build intuition, and to yield simple analytic results. The results may be
summarized as follows: increasing predator search velocity, ocean growth tends to
decrease the optimal age at migration, while increasing migration distance, predator
density, or ocean mortality rate tends to increase the optimal age at migration. Two of the
model parameters, freshwater growth rate and migration velocity can have either a
positive or negative effect on age at migration, depending on the value of the other
parameters. Temperature influences both ocean and freshwater growth rate, and mortality
rates, and since the effect of these variables on age at migration may counterbalance each

other, it is not clear what its net effect is. Except in the case of freshwater growth, the sign
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of a parameter’s effect on optimal weight at migration is the same as the sign of its effect
on age at migrationi.€., early migration means smaller weight). Increasing freshwater
growth increases optimal size at migration, but at the same tinteeceraseptimal age

at migration.

In Chapter 3 | add more realistic growth and fecundity assumptions to the model. The
ocean growth is determined by a von Bertalanffy curve rather than exponential curve;
fecundity is proportional to a fractional exponent of spawning weight, rather than directly
proportional to spawning weight; and the exponential freshwater growth of Chapter 2 is
replaced by a growth curve that is the difference between a Holling Type Il feeding
function and a metabolic cost function that depends on weight and swimming velocity.
Varying freshwater growth parameters reveals that as freshwater growth increases, so does
optimal age at migration. However, the sign of this effect reverses as the influence of
limited ocean growth is decreased—becoming more exponential in nature. This shows
that limited ocean growth is at least in part—if not wholly—responsible for the positive
effect of freshwater growth rate. The effects of migration distance, predator ocean
mortality rate, predator activity, current velocity, and spawning time are all consistent with
the heuristic model. Predator density, however is inconsistent: its increase results in a
decrease in age at migration. By reducing the limiting effects of handling time and
metabolism, it is possible to reverse the sign of the effect so that age at migration increases

rather than decreases with predator density.

In Chapter 4 | included seasonality by through temporal fluctuations in food consumption,
metabolic processes, and predator activity. The temporal fluctuations in these variables

were driven by a periodic temperature function of given mean annual temperature, phase
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angle, and amplitude. The resulting objective function had yearly humps corresponding to
the best within-year migration timing, the tallest hump representing the global maximum.
As a result, seasonal temperature fluctuations exerted a strong influence on the age at
migration, not only determining the optimaithin-yearmigration timing, but also the
optimalyear of migration. The best time of migration corresponded to periods of low
temperature, when predator activity was at a minimum. As fish grew, the influence of

seasonality decreased because larger fish were assumed less susceptible to predators.

The sign of the parameter effects were consistent with the case were seasonality was
absent. The phase angle parameter defines the time of minimum temperature, and
therefore is responsible for anchoring the optimal age at migration to a particular time of
year. Other parameters have little to no effect on within-year migration timing, but can

strongly influence the optimal year of migration.

In Chapter 5, | justified approaching the problem of diel migration pattern and current
velocity selection from a behavioral ecology perspective. By considering the possible
selective pressures shaping the behavior of young salmon, and couching them in equation
form, | developed an optimization model that retained the ability to predict migration
timing as in other chapters, but was much more general in that it treated diel migration and
current velocity choice. The resulting optimization problem was dynamic, and included
current velocity and swimming velocity as control variables; time of entry into the estuary,
time of ocean entry, and spawning time as control parameters; weight and downstream
displacement as state variables, and the log of expected reproductive success as the

objective functional.
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In Chapter 6, the optimal control problem was presented in a form that allowed application
of the maximum principle. To avoid resorting to nonsmooth techniques, dependence of the
control variable constraints on the state variables was omitted. For simplicity, the
dependence of predator density on current velocity was also omitted. Once the problem
was specified, the maximum principle was applied: the Hamiltonian was maximized with
respect to the control variables to obtain the policy functions, the co-state and state
equations were defined, and the transversality conditions were developed to supply
enough boundary conditions to solve the canonical equations and determine the optimal

control parameters.

A remarkable amount information was gleaned by simply maximizing the Hamiltonian.
One important result, is that optimal behavior is largely controlled by the sign of the

appropriate switching function (definedas  whem 0 ,and  otherwise).

First focusing on the case where a marginal increase in downstream displacement is
beneficial to fitness.g., A, > 0), the sign of the switching functiam  is informative.

When it is positive, active downstream migration is optimal: the fish swims downstream in
the swiftest current, at a speed that exceeds the maximum growth speed (if the maximum

swimming speed permits).

When the switching functioo, is negative, there are three possibilities: (i) if the
maximum current velocity exceeds the maximum growth speed, then the fish holds
station, migrating against the current, swimming at its maximum growth speed; (ii)
otherwise, the juvenile either (a) migrates upstream, swimming in the most rapid current,

and at a swimming velocity that exceeds the maximum current velocity, but is less than the
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optimal growth velocity or (b) swims downstream in a current of zero velocity, and at a
swimming velocity that does not exceed the optimal growth velocity. Option (a) is optimal
when the maximum current velocity is close to zero (relative to the maximum growth

velocity), and option (b) is optimal when it is close to the maximum growth velocity.

When the switching functioo, is zero, maximizing the Hamiltonian gives more limited
knowledge of the optimal controls. If the maximum current velocity exceeds the
maximum growth speed, then two strategy classes are optimal (a) the fish swims against
the current at its maximum growth speed and in a current velocity at least as great as its
maximum growth speed (b) the fish swims downstream in a current velocity not exceeding
its maximum current velocity, with a swimming speed equal to its maximum growth
speed. Notice that the optimal current velocity is not unique determined: it is only known
to lie in an interval. The swimmingpeedhowever, always equals the maximum growth
speed. If the maximum current velocity is less than the maximum growth speed, then

option (a) is optimal.

When the co-state variable associated with displacement is nonpositive, the sign switching
function o, largely characterizes the optimal behaviors. When it is negative, the fish
display an “upstream migration” behavior, swimming in slack current or near the shore

(u = 0), while swimming upstream at a speed that exceeds the maximum growth speed

(if the maximum swimming speed allows).

When the switching functioa, is positive, fish show a “feeding and predator avoidance”
behavior, but there are actually three possible behaviors based on the maximum current

velocity. (a) If the optimal current velocity exceeds the maximum growth velocity, the fish
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holds station, swimming against the current at its maximum growth speed. Otherwise, the
fish swims in the swiftest current either (b) holding station, or (c) migrating upstream with
a swimming speed between the maximum growth speed and the maximum current

velocity. Only one of these three behaviors is optimal at any given time.

When the switching functioa, is zero, fish follow a strategy characterized as
intermediate to when it is positive or negative. The optimal behavior is not actually
uniguely determine by this case, and further analysis of the canonical equations is needed.
However, it is known that the fish swims upstream at its constrained maximum growth
velocity, swimming in any current from O (resulting in upstream migration) to the

constrained maximum growth velocity (resulting in station holding).

When the co-state variable associated with displacement is nonpositive, no downstream

migration strategy is optimal.

In Chapter 7 | explore how migration behavior is influenced by fluctuations in light
intensity and maximum current velocity. In the first section | developed an exhaustive list
of optimal strategy types when time fluctuations in model parameters were ignored (the
autonomous case). These strategies were then compared to the optimal strategies in the
case where light levels and maximum current velocities were allowed to fluctuate. This
allowed me to gauge the influence of freshets and nighttime on migration behavior. In the

autonomous case, one of three behaviors was found to be optimal:
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S1. Initially, the juvenile holds its station, swimming against the current at its optimal
growth speed. At some critical weight, it begins migrating downstream, swimming
in the swiftest current, and actively swimming downstream at a speed greater than

its optimal growth speed.

S2. The juvenile begins migrating immediately after emergence, swimming at a speed
greater than or equal to its optimal growth speed, and in the swiftest current. It

migrates nonstop to the estuary.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims
downstream at its optimal growth speed, or against the current at its optimal

growth speed. Migration upstream is not permitted.

When time of estuary entry was fixed, it was possible for interrupted migrations,
characterized by downstream movement during periods of relatively low capture
probability, and station holding when it is higher. When time of estuary entry was allowed
to vary in the optimization problem, interrupted migration ceased to be optimal, and the
optimal strategy was S1—initial station holding followed by a nonstop migration to the
ocean. In the case of fluctuating capture probability or maximum current velocity, the
reactions of the fish were similar, and exemplified by the optimal reaction to a freshet:
either the freshet should be completely ignored (station holding), or the fish should
migrate with the freshet, moving nonstop until arriving at the estuary. Fish ignored a
freshet if it is not of sufficient strength or duration, or if it did not occur when the fish was
of sufficient sizei(e., near the time marking the onset of migration in the absence of a

freshet.)
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8.3 Discussion

8.3.1 Age at migration
Several factors can act separately or together, to produce relationship between “growth

opportunity” and age at migration. Some of these factors are:

0] Ocean-challenge factofocusing on the latitudinal gradient, since northern
oceans represent a more osmotically challenging environment, the slower growing fish

of these northern latitudes benefit by migrating out at a larger size (Taylor, 1990).

(i) Predation vs. migration distance factéiocusing on the migration distance
gradient observed in the Columbia and Fraser Rivers, since areas of low growth
opportunity are generally associated with upper tributaries (positively correlated with
migration distance), and larger fish are more likely to survive longer migrations, it is

beneficial for fish inhabiting these upper reaches to migrate later.

(i)  Freshwater-predation factoFreshwater predation is reduced in regions of low

growth opportunity, giving a greater survival value to longer freshwater residence.

(iv)  Lethal-temperature factoFocusing on the latitudinal gradient, fish inhabiting
California rivers would be exposed to lethal summer temperatures if they resided in

freshwater for a year.

(V) Starvation factarAreas of high growth opportunite.g, coastal streams of
Oregon, California rivers, and lower altitude regions of the Fraser and Columbia
Rivers) in the spring and early summer, become uninhabitable as food resources
dwindle, and metabolic costs do not diminish enough to make up for it. Fish rearing in

these regions migrate earlier than fish in regions of low growth opportunity.
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(vi)  Temperature-related freshwater predation facRegions having high summer
temperatures can bring high predation rates due to temperature-elevated consumption
rates of predators. In these regions, juveniles failing to migrate before temperature
increases are confronted, not only with higher metabolic costs (vii), but also reduced
survival. This factor is similar to (iv), but involv@iactuationsin predation rather than

mean predation rate.

(vii)  Zoogeographical factoil he distribution of the ocean- and stream-type fish is a
result of their post-glacial dispersal, with ocean-type dispersing to the south, and

stream-type, to the north (Taylor, 1990).

Some of these factors have been addressed directly through modelling, others have not. |
appeal to literature and model predictions to examine each. Most are based explicitly on

adaptation, linking behavior directly to growth, reproduction, and survival.

The idea of an ocean challenge factor (i) is supported by studies of smolt performance, and
may explain why Alaskan chinook salmon (even populations rearing near the ocean) are

of stream-type. Locomotor and osmo-regulatory performance are inhibited at low
temperatures.g., cold climates north of 8§ (Brett, 1967; Knutsson & Garv, 1976;

Beamish, 1978; Webb, 1978; Virtanen & Oikari, 1984). Therefore, larger smolt size may

be selected in the cold northern environments, because larger smolts have an increased
performance benefit (Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves &
LeBrasseur, 1986), leading to longer freshwater residence times in the north. It is

uncertain if this factor has bearing on the age at migration pattern observed in river
drainages where ocean- and stream-types are sympatric, because these fish enter the ocean

in the same location.
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A predation-migration distance factor (ii) could, at least in part, account for greater age at
migration of upstream populations on rivers where ocean- and stream-type populations are
sympatric. The models of chapters 2-4 showwien all else is equaincreased
migration distance, creating greater predation risk enroute to the ocean, is optimally offset
by delaying migration. However, all else is seldom equal, and the result must be used
cautiously. For example, upper tributaries generally have lower growth opportunity, which
in itself can produce pressure for earlier migration (according to the models of chapters 2-
4). Furthermore, throwing at least some doubt on the importance of this factor, is the fact
that there exist a few ocean-type populations that rear in inland locations on the mainstem
of the Snake and Columbia Rivers. If at play, this predation-migration distance factor does
not differentiate stream- and ocean-type populations in Alaska, since according to Taylor
(1990), these populations atk stream-type, regardless of migration distance. In
California, this factor can have little bearing since the majority of populations are ocean-
type, but the two stream-type populations known to exist originate in Mill and Deer

Creeks (F. Fisher, Stockton, CA, pers. comm.), upper tributaries of the Sacramento River.

The freshwater-predation factor (iii) may act if predation is less severe in regions of low
growth opportunity making later migration more favorable than in high-growth-
opportunity locations. If indeed predation is lower in areas of low growth opportunity,
then models of chapters 2-4 suggest that the loss of growth experienced by greater
freshwater residence time can be compensated by greater survival probability and larger
size at migration and ocean entry. It is unclear if this growth-opportunity vs. predation
pattern exists in nature. However, it is known that some important salmon predators are

less abundant in upper tributaries. For example, the northern squatfishacheilus
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oregonensis which is common in the pools formed by dams on the mainstem of the
Columbia River, is scarce in lower order streams (Beeatrad, 1988), and is known to
prefer areas of slow to moderate flow, and temperatures’ & 8923 C. The
smallmouth basdicropterus dolomiey)j a lesser salmon predator on the Columbia
River, prefers slight gradients (.078% to .473%), associated with higher order streams, and
high water temperatures (2C to 27 C). Predation is an important determinate of age at
migration, and more research is needed to define its relationship to growth opportunity. In
fact, it appears to be the only factor thatentiallyexplains the pattern observed between

growth opportunity age at migration throughout the chinook’s range.

The lethal-temperature factor (iv) has limited application over the range of chinook
salmon, but can be important in California rivers and streams where summer temperatures
reach lethal levels(TABLE 4.5). The preponderance of ocean-type chinook in California
may be due, to some extent, to a decrease in habitat suitability (Southwood, 1962) as

temperatures rise.

The starvation factor (v) is similar to (iii) in that, in both, migration is prompted by a
decrease in habitat suitability. A decrease in river flows accompanied by rising summer
temperatures are correlated with fish migration in the Hanford Reach (Becker, 1973a). A
decrease in flows can lead to a decrease in the rate of food drift (Waters, 1969), and can
accompanied by an increase in temperature. These factors together could lead to starvation
(or at least poor growth), making the river habitat unsuitable (FIGURE 8.1). In contrast,
streams and rivers of lower growth opportunity (upper reaches of rivers or populations
north of 56N) may not warm enough in the summer to make metabolic costs prohibitive

(FIGURE 8.2).
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FIGURE 8.1 (a) Detection time if 46 PIT-tagged subyearling salmon at Lower Granite
Dam, water temperature, flow, and temperature-dependent specific rate of respiration of

a 5-gram subyearling. Migration timing may be attributed to a decrease in habitat

suitability. As summer progresses, (b) temperatures rise, (C) respiration rate increases,

and (d) flows decrease. The temperature-dependent specific respiration rate function is

taken from Hewitt & Johnson (1992).
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FIGURE 8.2 Comparison of 1981-82 flow, temperature, and specific rate of
respiration of a 5-gram fish at the Snake River Anatone USGS gauge (RK 269) and the
East Fork of the Salmon R. above Big Boulder Creek (USGS gauge 13297453).

Another factor that is linked with habitat suitability is the temperature-related freshwater
predation factor (vi). As in (iv) and (v), migration is prompted by a decrease in habitat
suitability due to increasing temperatures. The maximum consumption rate of salmon
predators such as the northern squawfish, smallmouth bass, and walleye is known to

increase as temperature rises, failing to diminish over the sublethal temperature range of
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salmon (FIGURE 4.2). If the feeding activity of the predators is severe in the regions of
high growth opportunity, one expects to see seaward migration, or at least migration out of
these environs (FIGURE 8.3). The results of CHAPTER 4 suggest that age at migration
can indeed decrease when temperature dependent predation is considered. To test
importance of this selection pressure, one must understand the geographical distribution of
salmon predators and temperature regime (FIGURE 8.2). A simple model run (FIGURE
8.4) demonstrates that spatial structure in temperature regime can be important in

determining optimal age at migration.

The zoogeographical factor (vii) does not directly address the adaptive significance of the
geographical distribution of stream- and ocean-type chinook, and it ignores the selection
gradients that might have produced the observed distribution. Over the 13,500 years since
the Wisconsinan glaciation, chinook salmon have produced approximately 2,700
generations. A combination of this large number of generations, consistent and strong
geographically-varying selection pressures, heritability of migration behavior, and genetic

variability, supplies conditions necessary and sufficient for local adaptation.

Various factorsile., (iii), (v), (vi), and (vii)] could contribute to both the latitudinal

gradient and the migration distance gradient in age at migration. Given that | have thrown
some doubt on (vii), the remaining factors capable of explaining both gradients are: (iii)
freshwater-predation, (v) starvation, and (vi) temperature-related freshwater. All other

factors must be combined with others to explain both gradients (TABLE 8.1).
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FIGURE 8.3 Detection time of PIT-tagged subyearling salmon at Lower Granite Dam,
water temperature, and a temperature-dependent consumption function for northern
squawfish. The subyearlings were tagged between 30 May and 2 July of 1991 in the
Snake River drainage between RK211 and RK250 above Lower Granite Dam. Mean
daily water temperature data were recorded at Billy Creek (RK 265). (a) The peak of
detection occurred in mid July, and most emigrated by September. Note that this peak
in migration corresponds to periods of high temperature (b), which also corresponds to
peak consumption rate of northern squawfish (c). The temperature dependent
consumption function (d) is a generalized gamma, and is taken from Vigg & Burley
(1991).
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FIGURE 8.4 Comparison of fitness curves showing the influence of simple spatial
structure. Curvél uses the seasonal temperatures of 1981-82 from the Anatone Gauge
(RK269 of the Snake R.), no spatial river structure, and a migration distance of 800 km.
Curvell also uses a migration distance of 800 km, but in the first 10 km, temperatures
of East Fork Salmon R. 1981-82, and over the last 790 km, the warmer Anatone Gauge
temperatures apply. Predation parameters were 8et .t kmtandZ = 1400 km@r'l,

and the remain parameters are as given in TABLE 4.4. A juvenile optimally migrates
during the first year whell applies, and during the second yeat ipplies. This

occurs because the colder temperaturés give reduced predation (due to a
temperature-dependent consumption rate), giving the juvenile an opportunity to remain
in the upper river and grow for a year (under reduced predation conditions), before
migrating through regions of more aggressive predators.
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TABLE 8.1 Factors and the gradient(s) they address.

Relationship addressed Applicable factors
Latitudinal gradient ®, (i), (iv), (v), (vi), (vii)
Migration distance gradient (i), (i), (iv), (v), (vi), (vii)

8.3.2 Applications to the Columbia River System

The Columbia River has both stream- and ocean-type populations present, with the
stream-type fish typically distributed inland and the ocean-type distributed coastally.
When ocean-type chinook are distributed inland, they typically rear in the mainstem of the
Columbia or Snake Rivers, while, in contrast, stream-type chinook rear in tributaries
which are associated with higher elevations and usually, colder annual temperatures. The
fundamental differences in the behavior of these two life-history types that must be

respected when managing the river for their mutual benefit.

8.3.2.1 Response to increased flow or drawdown

Of the two life-history types, the model suggests that ocean-type chinook will show less
migration response to measures of increased flow. If, as suggested in CHAPTER 6 (See
FIGURE 6.3), ocean-type chinook are operating in a “predator avoidance and feeding”
mode, one expects that increasing flow can actuadlyce movememwf ocean-type

chinook by making a station holding superior to active foraging (appetitive movement). In
contrast, stream-type chinook, which are likely to be in a more aggressive downstream

migratory state than ocean-type chinook, may truly benefit from a measure that increases
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maximum current velocity and decreases travel-time (and consequently time at risk to

predators) to the ocean.

These model-related predictions are borne out, to some extent, by data. Rayadond

(1975) and Simst al.(1976) found that even during high-flow years, large numbers of
ocean-type chinook remained in John Day Reservoir for a protracted period compared
with stream-type chinook. These early observations are supported by more recent studies
of ocean-type migration as well. Giosgial. (1994) discovered that ocean-type chinook

not only show protracted reservoir residence, but also upstream movements after marking,
indicating that the these fish are not consistently displaced downstream. Note that these
upstream movements support the notion that ocean-types are showing predator avoidance

and feeding behavior along with low-flow induced appetitive movements.

8.3.2.2 Long-term effects of dams

Hydroelectric developments has had a strong impact on migration and survival of both
stream- and ocean-type chinook salmon, as well as other salmon species. There is direct
mortality due to passage through the turbines, spillways, and bypass systems at the dams.
The cumulative effect of passage through a series of dams can produce high mortalities for
upstream salmon stocks. For example, juveniles originating above the Lower Granite Dam

must pass 9 dams (if they are not transported) enroute to the ocean.

From a lifetime-fitness perspective, fish have two possible strategies that fish can follow:
lifetime freshwater residence (residualism), or migration to the ocean to feed (anadramy).
It is possible that since the migration corridor is expensive (due to dams and predation in

their impoundments), if there exists suitable year-round upstream habitat, residualism may
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become more commonplace. This is possible if the conditions for natural selection are met
(heritability, variability, and persistent, directional selection pressure). Of course, the
stipulation of suitable year-round upstream habitat is essential. Earlier in this discussion, |
argued that if habitat suitability decreases rapidly during the summer, due to temperature-
related factors, there can be intense selective pressure for migration. Of the two life-
history types, it seems most reasonable that stream-type chinook will have more suitable
year-round habitat than ocean-type chinook, as well as a tendency to remain in freshwater

longer, and therefore will be more likely to exhibit residualism.

Aside from considerations of age at migration, the reduced current velocities associated
with impoundments, can also influence migration rates and feeding behavior. Although
appetitive movements of ocean-type chinook appear to be important in waters with
reduced current velocity, they may have been much less so when dams were absent and
river currents were swift. At the same time these impounded waters made it possible for
predators, such as the northern squawfish, typically absent from swift-moving sections of
rivers and cooler waters, to thrive throughout the mainstem of the Columbia and Snake
Rivers. The increased appetitive movements made more important by reduced current
velocity, together with an increase in predators, probably led to a substantial increase in
predation. Because increased movements could also, in theory, make the juveniles more

visible to predators, exacerbating the problem of increased predator density.
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APPENDIX A CO-STATE VARIABLE
RESULTS

The two results that follow give sufficient conditions for the co-state variables to be
nonnegative. Although both results are of interest, Result A.2 is of most concern here,
since the optimal migration strategies were derived under the assumption that the co-state
variable associated with weigt, (t) , was positive. In contrast Result A.1 is less
important since the optimal strategy was constructed both for the case where the co-state
variable associated with displacement it is negative and when it is nonnegative.
Furthermore, there is no good biological reason to assume that it is positive. As luck
would have it, the proof of Result A.2 is both the simplest to prove and the most

important.

Result A1 If u,,,andg are increasing irx k { ,an@ are decreasingxink ; is
decreasing inv ; andp isincreasingw ; than (t) is nonnegative far all in the time

horizon

Proof

| prove thatA, (t) =0 by comparing the values, given by the value function, of two

juveniles of identical weight beginning at different locations at time . | show that the

1. The time horizon is assumed to be the time from emergence to the time of arrival in the estuary. Also, for
convenience,l  will represent the optimal time of estuary entry.
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juvenile located further downstream enjoys a value (defined as the remaining fitness) at

least as great as the value of the upstream fish attime , 3q that= g:(/z 0

In overview, | first assume that the upstream fish arrives in the estuary at its optimal
terminal time follows its optimal velocity trajectories. | then use the optimal decisions
followed by the upstream fish to construct a terminal time, a current velocity trajectory,

and a swimming velocity trajectory, which if applied to the downstream fish, give an
objective functional value at least as great as the value of the upstream fish. Since the
value of the downstream fish must be at least as great as the objective functional evaluated

at the terminal time and velocity trajectories | constructed, it must also be at least as great

oV
=5, 20

as the value of the upstream fish. Consequenlft)
Suppose that at timtg , fish 1 is located at position and fish 2 is located at position

X + Ax, downstream from fish 1, but upstream from the estuary. Suppose also that both
fish weighw a time, . For fish 1, [ , optimal terminal time, ana€t) W, (t) ,

u, (t), andv, (t) be the position, weight, current velocity, and swimming velocity
respectively for each time such that< T, . lnextuse the optimal terminal time and
optimal trajectories for fish 1 to construct a decision scenario for fish 2. It is constructed so
that: (i) the swimming speed of fish 2 always matches the swimming speed of fish 1, (ii)
fish 2 is always at least as far downstream as fish 1, (iii) fish 2 weighs as least as much as
fish 1 from timet, tor, , (iv) fish 2 arrives at the estuary at the same time as fish 1, and (v)
fishl has a migration speed which either matches or exceeds the migration speed of fish 2
from timet, toT, . Letx, (t) w,(t) u,(t) and,(t) be the position, weight, current
velocity, and swimming velocity of fish 2 at any time from Tto , not necessarily

optimal. Defineu, (t) and, (t) in the following manner:
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Case 1. Ik, (1) <x,(t) and
a. 0<v,(t),thenu,(t) = 0 and,(t) = -v,(t)
b. —U, (t) <V, (t) <0, thenu, (t) = -V, () ands, () = v, (t)
C. Vy(t) <=Uy(t), thenu, (t) = u () ands,(t) = v (1)

Case 2. Ifx; (t) 2%, (1) , them, (t) = u,(t) and,(t) = v, (1)
| next show that (i)-(iv) hold.

Proof of (i) In both cases above, the swimming speed of fish 2 equals the swimming speed

of fish 1 {.e,,

Vo (8)| = V4 (t)]). Thus (i) holds.

Proof of (ii). If (ii) does not hold, then at some tirtiex, (t") <X, (t") . By continuity of
the displacement trajectories, at some tthe, (t') = X, (t') sard) <x; (€) for
any¢ such that' <& <t" . Note that case 2 holds on from timet" to , and therefore
u, (t) = uy(t) andv, (t) = v, (t) . Hence the ordinary differential equations governing
the displacement of fish 1 and fish 2 are identical from timet" to , with the same
condition att' , namelyx, (t') = x; (t') Since the solution to an ordinary differential
equation is uniquex, (t") = X, (t") , contradicting the earlier statement that

X, (") <X, (t") . Therefore (ii) must hold.

Proof of (iii). To prove (iii), | must show that from tinte 1q Wy S W,
w, (') <wjy(t') . Assume otherwise. Then by continuity of the weight trajectories, there
exists a timg’ suchthagt'<T; w,(t') = w,(t') ,and

6Iimo(v'v2 (t'+38) —wy (t'+3)) <0, for 3> 0. Using (i) and the fact that does not
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depend on the sign of the swimming velocitg.(g (v, x w ) = g(Iv, x w 9 ), | may

write

g(vy (1), x (1), wy (1), 1) =gV, (1), X, (1), Wy (1), 1). (A.1)

Consequently,
lim w, (t'+9d) =
Jmgiz (1)

zsliinog(vz(tl +9), x2(t' +9), W, (t'+9),t' + )

lim g (v (t' +8),x, (t'+8), w, (t' +8),t +3) (by (A1)

e_!imog(\’/l(t' +9), x2(t') W, (1), t') (sincex,, w, , andy are continuoustin )

6Iirﬁnog(\’/l(t'+6),x2(t'),v*v1(t'),t') (sincew, (t') = w, (t') ).

Furthermore, sincg;, w; ,argl are continuousin ,

giinovﬁl (t'+9) = e_)Iirﬁnog (vy (t'+9), Xl (1), wy (t'), t') . Therefore,

e_!irﬁno(v'\/2 (t'+3) —Wq (t' +3)) <0 implies that

esliino(g (v (' +8), X, (1), Wy ('), 1) =g (Vg (t'+9),x ('), Wy (t'), 1)) <O.

But this is impossible since, (t') <x,(t') ,amd was assumed to be increasing in

Therefore, (iii) holds.

Proof of (iv).If at some point in timet! , case 2 holds.( fish 1 and fish 2 are at the same

position), then the two fish will swim together fram To , because they have identical
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migration velocities. Therefore they will both arrivesat  attilje . If however, case 2
never holds, ther, (t) is decreasing from time Tio , soxhét) <a t, for such that
t, <t<T,. Define the functiory (t) = x,(t) =%, (t) .Then
y(t) = X, (t;) —X;(t;) >0 since fish 2 is downstream from fish 1 at time , and
y(T) = X,(T1) =X, (T1) = %,(T1) —a<O0 sincex,(t) decreases frory (t;) |,
wherex, (t;) <a.Buty(t) is continuous. Therefoy¢t’) = 0 i.e( case 2 holds for
somet' betweeh, anfl ). This contradicts the earlier statement that case 2 never holds.

Hence the position trajectory of fish 2 satisfies the terminal condiitionxg (T,) = a).

Proof of (v).To prove (v) | consider each case in the definition of the velocity trajectories

for fish 2. In case 1au,+v,| = [0+V, <|u; +v,| .Incase 1b,

Uy + vy = |-V, +Vy = 0<|uy+vy|. Incases 1cand @, +Vv,| = |u; +v,| . Therefore
(v) holds.
Fish 1 has valu® (x, w, ) , and fish 2 has valex + Ax, w, t) . By our hypotHesis, ,

0, and{ are decreasingx k, isdecreasingZin ,&nd isincreasngin . Therefore by
(ii) X1 () <X, (1) and (i) wy (1) <w, (1), k(% (1), w, (1), 1) <k (X (1), w, (1),1),
B (X, (1), 1) <O (X, (1), 1), {(X, (1), 1) =T (x(1),1),and
® (W, (T1), T1) P (w,(Ty), Ty) forallt in the time horizon. By these inequalities in
addition to (v)|uy (t) +vy (t)| <|u, (t) +Vv, ()| forallt in the time horizon, and (iv)
T, =Ty,
Ty
VX w ) == [(Jug+Vy + (%, 1)) 8 (X, DK%, Wy, 1) dt + ® (wy (Ty), Ty)
t

1
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T2
S—I(\u2+v2\ +{ (X5, 1)) B (Xy, t) K (X, W, t)dt+d (w,(T,), T,)
tl

SV(X+Axw, t)).

ThusA, (t;) = aixvog W t) 0. Since, was arbitrary, (t) = (;lXV(x, w920 for

all t in the time horizonm

Result A.2 If kis decreasing inv an@ is increasingw , then(t) IS nonnegative
for all t in the time horizon. If, in addition, eith&r s strictly decreasingvin  dor is

strictly increasing inw , them, (t) is positive for dll in the time horizon.
Proof

| demonstrate that, (t) is nonnegative by comparing the value of two fish of different
sizes released at positian at titne . | show that the larger fish enjoys a value at least as
great as the value of the smaller fish, and hence the marginal contribution of at an

arbitrary timet is positivei., A, () = aiWV(x w, 9 = 0).

Consider two different sized fish at tie . Fish 1 is the smaller fish weighing , and fish
2 weighsw + Aw . Assume both fish are at position t;at . For fish T,let  be the optimal
terminal time, and ledi, (t) v, (t) ,and,(t) be the optimal current velocity,

swimming velocity, and weight respectively for such thatt<T, . Suppose fish 2
chooses terminal timfl , and follows current velocity and swimming velocity controls
u, (t) andv, (t) respectively, with resulting weight functiey (t) . | may then show

that fish 2 remains larger than fish 1 from titne Ttoi.e,, W, (t) <w, (t) for
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t, <t<T;). Suppose otherwise. By continuity of the weight trajectory, there exists a time
t' such that both fish 1 and fish 2 weigh(t') . Consider weight trajectories moving
backwards in time fromt' tb : Fish 1 and fish 2 are of identical weight at , they follow
identical velocity decisions from tinte=t' to= 0 , and yet obtain different weights at
time t. This is impossible since the ordinary differential equation governing weight must

yield a unique solution. Therefore fish 2 always weighs more than fish 1.

At t,, fish 1 hasvalu® (x, w, t;) , and Fish 2 has valllex, w+ Aw, t,) . Assuming that
kis decreasing inv an@® s increasingann , them, (t), t) <k (w, (t),t) and
® (W, (T,), T;) P (W, (T,), T,). Therefore
T
V(% W 1) <= (U + V| + 0% 1) (X ) K (g, Wy )t + P (W (Ty), Ty)
t

1

SV (X w+Aw, t,),

and since, was arbitrark,, (t) = %VV(x w, ) >0 . If, in additidn, is strictly
decreasing inv o is strictly increasingun , then eitkew, (t), t) <k (w, (1), t) or
® (W, (Ty), T;) >® (W, (T,), T,). Therefore
Ty
V(X wt)<- I (Jug +Vy + (X, 1)) 6 (Xq, 1) K (X, W,,, 1) dt + ® (w, (Ty), Ty)

b

<V (x w+Aw, t),

and sincd, was arbitrany, (t) = iV(X, w f) >0 m.
1 2 GW



APPENDIX B MAXIMIZING THE
HAMILTONIAN

The Hamiltonian is maximized below as function of swimming veloeity, and current
velocity, u. It is convenient to maximize the Hamiltonian in two separate cases: when the
co-state variable associated with displacement is positive, and when it is nonpositive. A
function known as the switching function, is used to help characterize the optimal
migration behaviors. When the co-state varidgle  is positive, the switching function is

defined axs, = A, -6k , when it is nonpositive, the switching functian,is= A, + 6k

This static maximization problem and can be solved by simply plotting cross-sections of
the Hamiltonian, and appealing to first order derivatives when necessary. We first
maximize with respect taw  along cross-sections defined by fixed swimming velocities.
The maximizingu s, each indexed by a value of fixed , are then substituted into the

Hamiltonian to make the problem single dimensional/(in ).

For notational convenience, the argumeqts tand are dropped from all functions,
since they do not enter explicitly into the maximization problem. The arguments,

andA, are retained. So, for example, the growth function is denotg@wWy instead of
g(v, x w 9. The maximizing choices af and will be denotgd ahd

respectively. These are not unique for any given pEmty, t A , A,) . Do not confuse
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the velocitiesu* and* , which maximize the Hamiltonian, with the optimal controls,

which are paths that maximize the objective functiahal

B.1 Positive displacement co-state variable
Any cross-section of the Hamiltonian defined by fixing may be written as

HI, fiveq = Y (U) +condant where
Y(U = A, (u+v) —[u+vbk. (B.1)

Whenus<-v,Y(u) = o,(u+v) ,andwhen>-v Y(u) = o,(u+v) .Anp that

maximizesY (u) also maximizes| s,.q - Therefore the problem of maximizing along a

cross-section reduces to: maximizéu) with respeat to , subjéctto< u, .. . This
problem is solved by inspection of a plotYof u) (FIGURE B.1). The maximiaging
depends on the sign of the switching functiopn, , and the value of the fixed swimming

velocity,v (TABLE B.1).
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0,>0 (case 1)

o, = 0 (case 3)
>
u

0,<0 (case 2)

FIGURE B.1 The optimal choice of the current velocity depends on the sign of the
switching functiong, Note that since\; is positive, so i®, . Wheno is positive
(case 1), the maximizingis clearlyumax When it is negative (case 2), the
maximizingu is eitheruy,ay —V, 0r 0, depending on whethew lies to the right,

within, or to the left of the interval[ u,,5,] respectively. Whew, is zero (case 3),

the maximizingu is eitheruy,, any value in the intervaty, un 4, or any value in

the interval Q,unya,, depending on whetey lies to the right, within, or to the left of

[0, umax respectively.
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TABLE B.1 Optimal choices of migration velocity corresponding to different

choices of the swimming velocity whég is positive.

Sign of switching Swimming velocity Maximizing current
Case number  functionoy condition velocity
1 + none Unnax
2a - v>0 0
2b - V< =Upax Umax
2c - “UpnaxSVs0 -V
3a 0 v>0 [0, Upaid
3b 0 V< =Upax Unax
3c 0 ~UpaxS VS0 [V, Unaod

The maximizing current velocity depends on the sign of the switching function, and the watakat¥e to0 and
—Umax IN cases 3a and 3c, the maximizing current velocity is any value in the specified interval.

We next consider the cases 1, 2 and 3 separately— each defined by the sign of the
switching functiono, . In all cases the Hamiltonian is written as a function of  alone, by
restrictingu to its known maximizing value for each giwen (TABLE B.1). Each
resulting restricted Hamiltonian is then the sunm g4 (v) , @ piece-wise linear function
L (v), and a constant (m ), making the one dimensional maximization quite simple. In
each case, it is solved by inspecting a plot 4 (V) and the piece-wise linear function
on the same coordinate system. Rather than explaining this methodology repeatedly for
each individual case, we will simply derive the piecewise linear fundtion, Lplot and

A,g on the same coordinate system, and derive maximizing velocity choices.
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B.2.1 If the switching functionagy is positive

For case 1uy* = u and the Hamiltonian becoes L, +A,g+ 8k , where the

max '’

piece-wise linear functioh, is given by

Li (V) = = (Upax™ V) BK+ A, (Upayt V) - Whenu ,, +v<0,

Li(V) = (UpaxtV) O, +A0(V); whenu,,, +v>0,

L, (V) +V) o, +Ag(V) .

(umax

)\Zg

7

O-2 (V + uma>)

FIGURE B.2 Whenoj is positive v* maximizes the sum df; andA»g, subject to

“Vmax< V= Vmax
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Sincel, is increasing irv and,g is symmetric abaut O, thenv* is nonnegative
(FIGURE B.3). Ifo, +A,g,(0) <0 @, is aright-hand derivative), theh =0
otherwise, as depicted in FIGURE B.3, the sum of the functions is largest at &'point
whereo, +A,g, (V") = 0 is zero. Therefore—applying the constraint

“Vinax<V < Vpax—Wheno, +A.g,(0) 20,v* = min(V,v,,,) -

B.3.2 If the switching functiono; is negative
For Cases 2a, 2b, and 2c, the Hamiltonian may be writtehas9(k + A,g + L, , Where

the piece-wise linear function, is

0, (v+ umax) if V<~Upax

L,(v) = 0 if —u .. <v<0.

max—
o,V if v>0

OoOod
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case 2b case 2c¢ case 2a

= = - u=20
u umaX u v

L N\
AT T

A7

0, (V+Upa.,) a.v

FIGURE B.3 Whenao; is negativey* maximizes the sum df, andA,g subject to
“Vmax < V < Vmax Note that the slope of the the left-most linear piede, @ steeper

than its right-most linear piece, sincg= A1 + 6k > [A\1 — 6k| = |o4].

There identify 4 possibilities, each dependinguign,  anqd defined below (FIGURE
B.3):

I. If min(vg, Vimaw <Unpay thenve = —min(vg, Vg > andu* = —vx
i If 0<uy S MIin( Ui Vinay thenu* =0 and
a. v* =0 ifA,g,(0) +0,<0 (g, is aright-hand derivative); otherwise

b. v¥ = min(V,Vv.,) , whereA,g, (V') +o, =0 .
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, . _
i, 1f 0 <Ugit < UpaxS MIN(Vy, Vigy), then u* = ug .,

QD

<
*

1

~Unax FAS0, (FUpa) 10,20 Vv = max( Vv, -v,,,) ; otherwise

(e
<

*
I

V" whereA,g, (V") +0, =0 .

V. If V2> Unax = Ugrit > Othen there are two points which maximize the Hamilto-
nian—the velocities given by (iib), and those given by (iiib).

U.;; is defined either the critical value of .,  that ensures that the velocities in (iib) and

(iiib) both maximize the Hamiltonian—such a value exists whengygy(0) +0,<0

(g9, is a left-hand derivative), d¥ if no such critical value exists. These results are

summarized in TABLE B.2.
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TABLE B.2 Optimal swimming velocity summary when the switching functgrs

negative.
Maximizing Maximizing
Possi- Derivative current swimming
bility u,,, Condition condition velocity velocity
i Vg < Unax none Vg —Vg
iat 0= Uy xS Ugrit A9, _,T0,<0 0 0
iib )\ng\v=0+ol>0 0 min(V, vy,
i@ 0<Ug <Up SV A0y, - _umax+ 0,20 Upay ~Upmax
iiib )\ng‘v:_umax+ 0,<0 Upay max( V', -V, )
v Vimax™ Umax = Uerit >0 none The velocities of both (iib) and
(iiib)

The optimal swimming velocity depends on the valueugf, relative to the constrained maximum growth velocity
\79 = min(vg, Vimay - If the maximum current velocity does not exceed the constrained maximum growth speed
(ii-iv), the optimal velocities depend on the maximum current velocity relative to a critical valyg, , or the
constrained critical current veIocitN;erit = Min(Uyip Vimay)

t g,in (iia-b) is a right-hand derivative.

B.4.3 If the switching functionay is zero
If o, = 0, there are infinitely many points that maximize the Hamiltonian. In the case, the
Hamiltonian (restricted to the maximizing choiceuwof ) may be written as

H = eZk+)\zg+ L;, where

o, (v+ umax) if V<~—Upax

0 if —U SV

Ly(v) = {
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case 3b case 3c case 3a

U = Unax uld [-v,up, uld [0, Uy,

/
N
/

—v v, v

FIGURE B.4 In this case the switching functian is zero, and the goal is to
maximize the sum of the functiohg andA,g with respect ta, while observing the

constraint;~Viax < V < Vimax

Sincel; is constant for= -u , there is possibly more than one choie# for

max

(FIGURE B.4). If—u o, s max(=\, ~Vpg,) - bothv = max(=y, —Via,)
ull [-v,up,] andv = min(v, vi,,) ul [0, uy,] maximize the Hamiltonian;
otherwise, the maximizing velocities are = min(vy, vp,,)  and [0, up,] . These

results are summarized in TABLE B.3.
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TABLE B.3 Optimal swimming velocities when the switching functapis zero.

Maximizing current  Maximizing

Possibility u.,,, Condition  velocity swimming velocity
it Vg < Upay [vg, Umasd —Vy

[0, Upad Vg
i Umax < \7g [0, Upand \7g

TThe velocities of both rows of possibility (i) maximize the Hamiltonian.

In all cases, the swimming speed equal to the constrained maximum growth speed and the current velociy is not
uniquely determined—it is only known to lie in the specified interval.

B.5 Nonpositive displacement co-state variable

The methodology of this section mirrors that of the previous. | will maximize the
Hamiltonian (with respect ta ) along all cross-sections defined by fixing , then use this
result to couch the problem in one dimension. Throughout the rest of the optimization, the

switching function will be defined as, = A, + 8k  insteadaf

As demonstrated before, cross-sections of the Hamiltonian may be written as

HI 4 = Y(u) +constant whereY (u) is definedin (B.1). Any that maximizes

v fixe

Y (u) also maximizes!| . By examining a plot¥fu) , and respecting the

v fixed

constraint0O<su<u it is possible to solve this maximization problem by inspection

max '’

(FIGURE B.1). The maximizingu depends on the sigmpf , and the value of the fixed

swimming velocity,v (TABLE B.4).
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0,<0 (case 1)

g, = 0 (case 3)

-

0,>0 (case 2)

FIGURE B.5 The maximizing choice of the current velocity depends on the sign of
the switching functiong, . Note that sinc@ is nonpositiveg, is negative
(assumingk > 0). Wheno, is negative (case 1), thafis strictly decreasing in,

and therefore the maximizing current velocit@.i8Vhen o, is positive (case 2), the
maximizing current velocity i85y —V, 0r 0, depending on whethew lies to the

right of, within, or to the left of the intervad,[umad respectively. Whew, is zero
(case 3), the maximizing current velocity is any valu®jmuf,,,, any value in(,

-v], or O, depending on whethetw lies to the right of, within, or to the left of the

interval 0, Uynax respectively.



230

TABLE B.4 Maximizing choices of current velocity corresponding to different

choices of the swimming velocity whég is nonpositive.

Sign of switching Swimming velocity Maximizing current
Case number  functiono, condition velocity
1 - none 0
2a + v>0 0
2b + V< =Upax Umax
2c + Uy SV<0 -V
3a 0 v>0 0
3b 0 V< =Upay [0, Upad
3c 0 “UpaxsVs0 [0, —V]

The maximizing current velocity depends on the sign of the switching function, and the value of the swimming
velocity relative td) and-uy,,, In 3b and 3c, it is any value in the specifed interval.

As before, we proceed by considering cases 1, 2 and 3 separately, and reducing the
Hamiltonian to one dimension by restricting it to the known maximiging (TABLE B.4).
In all cases the Hamiltonian can be written as the sum@(v) , @ piece-wise linear
functionL (v) , and a constant (in ). The maximizing velocities are found by placing the

functionsA,g(v) and.(v) on the same plot.
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B.6.1 If the switching functiono, is negative

Whenaos, is negative, the Hamiltonian is to be maximized over the aurwe0 (TABLE

B.4). This restricted Hamiltonian i8 = L, (v) +A,g(v) +constant , where

L;(v) = —Ivi6k+A,v. Whenv<0, therlL, (v) = vo, ;when>0 L, (v) = vo,
A9
)\29 L4

FIGURE B.6 If o5 is positive v* is identified by maximizing the suixy andA,g,

while observing the constraiftyyax< V< Vimax

Sincel, is decreasing i, andA,g is symmetric about = 0, the maximizings is
nonpositive (FIGURE B.3). 16, + A,g, (0) >0 (wherg, is a left-hand derivative), then
v¥ = 0; otherwiseyv* = max(V, -V,,,) ,where,+A,g, (V') =0 V(<0 )" s

less than the maximum growth velocity (in absolute value).
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B.7.2 If the switching functionos is positive

When the switching functioa, is positive, the Hamiltonian (restricted to maximizing

choices ofu ) may be written &$ = 8(k+A,g+L,(v)
where

0-2(\/'l'umax) if V<7Unax
0 if U, sv<0

o,V if v>0

L,(v) =

OoOonO

is the desired piece-wise linear function.
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case 2b case 2c case 2a

u=u u=-v u=20

o,V
0, (V+Up,) 1

FIGURE B.7 If o, is positivev* is the value of/ that maximizes the sum b and
Ao0, while observing the constraintVyax< V< Vinax Note that the right-most

linear piece ot., is steeper than the left-most linear piece, becaybe A1 + 6k >

)\1 + 0k = Oo.
Thre are two possibilities, depending on the maximum current velagjty, (FIGURE
B.3):
i. If min(vg, Vinay <Umay thenvs = —min(vg, Vg > andur = —vr

.. H * =
il If O up s min(vg, Vi, thenu* = u,,, and

a. v* = -u. ifA,Qg, (~Up,,) +0,20; otherwise,
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b. v* = max(V, -V, » whereA,g, (V') +0, = 0 ¢"<0).

These results are summarized in TABLE B.2.

TABLE B.5 Optimal swimming velocity summary when the switching functigris

positive.

o Upay Maximizing Maximizing
Possi- current swimming
bility ~ condition  Derivatve condition velocity velocity
| Vg<Upnax hone Vg —Vg
lia Unax<Vg A0y (FUpae X, W, 1) +0,>0 U, U ax
iib Unax<Vg A0y (TUpae X W, ) +0,<0 Uy max( V', =V,

The optimal swimming velocity depends on the valueugf, relative to the constrained maximum growth velocity
\79 = min(vg, Vimay - When the maximum current velocity exceeds the constrained maximum growth speed
(possibility i): the juvenile optimally holds station swimming against the current at its (constrained) optimal
growth speed. If the maximum current velocity does not exceed the constrained maximum growth speed
(possibility iia—b), the optimal velocities depend on the sigh,of, (—U,, 5, W, t) + 0, . The optimal behavior is
characterized by station holding (in i and iib) or upstream migration in slack current at a swimming velocity that
does not exceed the maximum growth speed.

B.8.3 If the switching functiono, zero
When the switching functioa, is zero (case 3), the Hamiltonian may be written as

H = elk+)\zg(v) +Ls(v),
where

if v<O

L) = {5 v ifvso

is a piece-wise linear function.
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case 3b

ul [0,uy,,,]

case 3¢

uld [0, -V]

case 3a

u=2~0

v v v

FIGURE B.8 When the switching functioa, is zero. The goal is to maximize the

sum of the functionks andA,g with respect to, where—Vpyax < V< Vimax

Sincel g (v) is strictly decreasing ovee 0

gty (V)

ovec 0 v*

is symmetric about0 v*
is nonpositive (FIGURE B.4). Sindg; (v) = 0 is found by maximizing
A,g (V) . This, by definition, occurs at the powrit = max(- v “Voad - When
—Up < V*, thenu* is any value if0, u,,,,] ; otherwise, it is any value in

[O, min(vg, Vmax ] - These results are summarized in TABLE B.6.
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TABLE B.6 Optimal swimming velocities when the switching functasis zero.

Maximizing current Maximizing swimming
Possibility u,,, condition  velocity velocity
[ Vg < Upax [0, Vg —Vy
il Umnax < Vg [0, Uy sl —Vyg

As in case 2, the optimal velocities depend on the maximum current velocity relative to the constrained maximum
growth velocity. Regardless of the valuewpf, ~ , the optimal current velocity is not uniquely determined, while
the swimming velocity is always equal to the negative of the constrained maximum growth speed. Notice that it
is always optimal to swim against the current, and that since the migration velocity is always nonpositive,
migration is allowed only in the upstream direction.



APPENDIX C AN AUTONOMOUS CASE

In this appendix, | present a simplified version of the optimal control problem, where
among other simplifications, state and time dependency is removed from the control
constraints, and the system of canonical equations is autonomous. Specifically, the
maximum current velocity,,,, , and the maximum swimming spegd are constants,
the capture probabilitik (w) is allowed to vary only with weight, the predation
parameter® and are constants, the growth function does not depend explicitly on time,
and the final time, also known as the time of estuary €htry, , is fixed. Furthermore, to
avoid the complications of low maximum current velocity (see CHAPTER 6), the
maximum current velocity is assumed to exceed the maximum swimming velocity. Also,
T (Unaxt Vima = @, ensuring that the fish will be able to swinrkxte= a  witin  time

units.

For notational convenience  will denote the time of estuary rathertthan . The optimal
control problem is summarized in TABLE C.1. The switching function will be taken as

o = g, throughout the appendix, since the assumption of autonomy make the co-state
variable associated with displacement positive (See Result 6.2). Other special notation of

this appendix is found in TABLE C.2.

Several special cases of this problem will be treated, demonstrating the limited number of

optimal strategy types that arise from the model. In each case analyzed, the canonical
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equations are developed based on the maximized Hamiltonian, and a qualitative analysis
of their possible solutions is explored based on the initial sign of the switching function

and growth function.

TABLE C.1 Optimal control problem (autonomous case with fixed estuary entry
time).

T

Maximize: - .
—J‘(\u +V +Q) Bk (w)dt +d (w(t)) (objective functional)
u, v 0
Subjectto: x = u+v (displacement equation)
w=g(v,w (weight equation)
0SUS Uy, (current velocity constraint)
IVl < Vi ax (swimming velocity constraint)

TABLE C.2 Special notation.

Variable or function Description
u* (t) Optimal current velocity.
v* (1) Optimal swimming velocity.
xX* (1) Optimal downstream displacement path.
w* (t) Optimal weight path.
T Optimal time of arrival in the estuary (fixed).
AL The co-state variable associated with downstream displacement.
A, (1) The co-state variable associated with weight.
o (X WA ,t) The switching function.
Vg (X, W, 1) Maximum growth speed. It is the unconstrained swimming speed that

maximizes growth.

vg(x, w, t) Vg = min(vg, Vima -
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TABLE C.3 Optimal swimming velocity summary Whem,., > Vinax

Optimal current and swimming
Sign of switching function velocities

E— * = _
- u* = vy, V¥ = -y,
+ U* = Upae V¥ =V
0 u* O [Vg Uped @andv* = —-vg , or

u* O [0, Upe] andv* = v,

C.1 The simplest case
In this section, a very simple case is explored and analyzed to the fullest, serving as an

introduction of the methods used in a more complicated case. Specifically, | make the

added simplifying assumptions:
Al' umaxz Vmax

A2. p andv,,,, are such that(v,,.,w) >0 fov ipw,w,.J ,where, isthe
weight achieved by a fish swimming at its maximum swimming speed fron®time

to timet .

A3. The maximum growth velocity exceeds the maximum swimming velocdy, (

Vinax< Vg (W) for win [wp, W, ).

The canonical equations for this problem are developed using the results of TABLE C.3
which gives the values of current velocity and swimming velocity that maximize the
Hamiltonian. It is best to consider cases #1, #2, and #3, separately, all determined by the
switching functiono (w) = A, —6,k(w) . The three cases corresponad o) >0

o(w) <0, ando (w) = 0 respectively.
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Case #1—when the switching function is negativAssuming thatw,,, < v, (w) , the
optimal velocities are* = u,,,, and* = v,,, ,and the resulting maximized

H* (t)= H(1)| (o) The maximized Hamiltonian is
H* (1) = 0(W) (Unaxt Vina) + A, (1) 9 (Vinae W) — {8k (W), wheno (w) >0

Case #2—when the switching function is positiva he optimal velocities ane = v,,,,

andv = -v,.,, giving the maximized Hamiltonian
H* (1) = A, (1) 9 (Vinae W) —(Bk(W), wheno (w) <0.

Case #3—when the switching function is zerd.he optimal velocities are given by
(u*,v¥) O { (U, V): ViaxSUS Upae V= —Viad OF

(ur,v*) O {(uVv): 0SU< U,V = V,.s , and the maximized Hamiltonian is
H* (t) = A, (t) 9(Viae W) —CBk(w) wheno(w) =0
Combining these three results, the maximized Hamiltonian is

A, (1) G (Vinaw W) — 26K (W) if o(w)<0 (C.1)
H* (t) =
O (W) (Unaxt Vima) + A, (1) 9 (Viar W) — Ok (W) if o(w) >0

The canonical equations are then given by

: A, (1) Gy (Vinax W*) — (8K, (W*) if o(w*(t)) =<0
A, (1) = (C.2)

Ay (D) Qo (Vinan W) = (E+ (Unaxt Vinad) ) BK,, (W*)if o (w* (1)) >0

W* (1) = g (Viar W* (1)), (C.3)
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A (1) =0, (C.4)

0 if o(w* () <0
X* (1)= (C.5)

Unax+ Vinax i 0 (W* (t)) >0

).(* (t) |:| [0’ umax_vmax] D [Vmax’ umax+vmax] If G(W* (t)) = O

There are two possibilities arising from these equations:
a. o(w*(t))>0o0n[0,T] ,or

b. o(w* (t)) <0 for somet in[0, T]

If the first possibility holds, then by (C.5)* (t) (Upaxt Vmad T, @nd so at time

a

* = i = = _ -
x* (T) (Umaxt Vimaw T. By assumptionx(T) = a , and sb U +v_)

Therefore ifT > (uitvx) , then the second possibility must be correct. Assume that
T>__ & o (w* (t)) <0 holds throughout O, T] ,ther(T) = 0 whichis

(umax+ Vmax)
only possible ifa = 0 : in which case the juvenile does not need to migrate at all. Next

assume that (w* (t")) >0 forsonte {0, T] ;sinkg &hd are constants, and
k (w) is strictly decreasing iw , there exists a unique werght  such that

o(w)= A, —-0,k(w) = 0. Sinced (Vya W(t)) >0 (by hypothesis), there must be a
unique timet' such that (t) = w' . This means that the switching function is zero for

only an instant of time, and therefare singular path is possihle

In conclusion, whemm >0 |, the juvenile optimally waits until it grows to a critical\size

and then migrates downstream to the ocean at velagitytr V., .. . The critical weight
is that weight attained by a juvenile at tifie- @/ (U, 2t Vinay . Its growth is governed
by (C.3). Interestingly, the exact forms of the functi&risv) @r(avy) are not

required to solve for the trajectorigs  ani . The switching function is known to be
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zero precisely at tim& — &/ (U,.x*+ Vmay  regardless of the precise forky( of) A
merely used the fact th&t(w) is decreasingvin  @r(av;) isincreasimg in . These
facts were essential in showing that bath  and  are nonnegative, and subsequently in

maximizing the Hamiltonian.

An important question which arises from this example is “Under what conditions on the
food densityp is it guaranteed that assumptions (A2) and (A3) are satisfied?” The food
density is expected to play an important role in shaping the optimal weight and
displacement trajectories, and it would be nice to know under what conditions the simple
solution described in the special case is optimal. Of comyse will depemd on , and

this dependence must be known to answer the question.

Fortunately, assumption (A2) is equivalengtév,,,, W,) >0 . To prove this, assume
otherwise, so thaf (V,,., W,) >0 and when(T) >w(0) ,there exists in
(Ww(0),w(T) ] suchthag (Vy., W) <0 . Sincg(Vy., W) iscontinuousvin , there
exists a weighwv" in(wy, W')  such thgt(v,,., Ww') = 0 . Solving the differential
equation backwards in time starting with the tithe  suchwh@dt) = w" yields
w(t) = w" fortin [0,t"] . This contradicts that fact thg{ v,,,, W,) >0 . When

w(T) <w(0), the same contradiction arises. Thus (A2) is indeed equivalent to

g (Vmax1 WO) > O

C.2 The general case where,, ., < U
Next | explore a more complicated situation under the assumption that the maximum
swimming speed is less than the maximum current velocity, but the maximum swimming

velocity is not restricted to be less than the maximum growth velocity—the velocity that
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maximizes the unconstrained growth function. For convenience, in the remaining analysis,
| will restrict the optimal growth velocity to be less than or equal to the maximum
swimming speed, and the new optimal growth velocity will be defined as
Vg (W) = min(Vv, (W), Vy,yo - This is the maximum of the growth function attained when

the swimming speed is constrained to not excegd

In the forthcoming development, | will consider three possibilities that will help to
characterize the optimal strategy types

1. g (Vg (W), Wp) = 0.

2. 9(Vg (Wp), wg) >0.

3. 9(Vg (Wo), W) <O.

The maximizing paths can take on a very different character depending on the case which

applies.

As in the last section, | proceed by first obtaining the maximized Hamiltonian, and then
building the canonical equations. As before, | consider the three possible cases stemming
from the sign of the switching functiom(w) = A, -6k (w) . The optimal velocities for

each case are found in TABLE C.3.

case #1—when the switching function is negativ&he optimal velocities are

u* = U, andv* = min(Vv,v,,,) , wheres'>0 satisfies

o(w) +A,0,(v,w) =0. (C.6)
Since the swimming velocity can never exceed the maximum swimming velggity, , it

will be convenient to work with the quantitNIy = min(V,V,,) insteadvwdf . Since
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g(v, w) is concave for >0 , and the quantitiegw) ,and  are posiive, exceeds
the maximum growth velocity, (w) . Working in terms\of andw) , itis known

only thatv' > V, (W) . This gives
H,* = -6k, (w) (umax+\~/') +A, (1) gy (\7‘,W) -0k, (w), wheno(w) >0.

case #2—when the switching function is positiva he optimal velocities are given by

u* = v, (w), andv* = -v,(w) yielding
Hy* = A, () 9y (Vg (W), w) =6k, (W), wheno(w) <0.

case #3—-when the switching function is zeroThere are two possibilities for the optimal
velocities: 1)u* O [V, (W*), Uy,] and* = =v,(w*) ,or2y* O [0,u,.] and

v* = v,. In either case,
H*,, = A, (1) gw(\79, w) -0k, (w), wheno(w) =0.

The canonical equations are then given by

=N, G (Vg (W* ), w*) +8k,, (w*) if o(w*(t)) <0
_ . (C.7)
A, = A0 (V (AL A, Wr), wr) if o(w* (t)) >0
+ [2+ Ut V (A Ay W) ] BK,, (W)
g (V, (w*), w*) if o(w*(t)) <0
w* = . (C8)
g(vV (A, A, w),wr) if a(wr (1)) >0
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A, =0 (C.9)

0 if o(w* () <0
Xt = (C.10)

Upaet V' (AL A, WH)  if o (W* (1)) >0

X* (1) O [0, Upax= Vg (W*) ] O [Vg (W*), Upay* Vg (w*)] if o (w*) = 0.
Before proceeding, it is useful to derive a result describing the behavior of the growth and
switching functions in the event that, at the same instant, the growth function is zero and

the switching function nonpositive.

C.2.0.1 Result. Ifo (w* (t;)) <0 andw* (t;) = 0 atsometimeé, {0, T] ,then

the switching function and the weight path are constant throughouf 0O, T]

Proof. Assume that (w* (t;))= A, -0, k(w* (t,)) <O and* (t;) = 0 attime

t, 0 [0, T] . At the pointt, , the differential equation governing weight is

W* = g (V, (w*), w*) (C.11)
and the variabled, , ,and exert no influence on this differential equation. Since
w* (t,) is a stationary point of (C.11), the weight path is unable to deviatevito(m,) ,
and hence remains there throughuyt T] . Working backwards through time shows that

the weight path must also be constant throughout,] = .

C.2.0.2 Corollary. If o (w* (t;)) <0 andw* (t,) = 0 at some timet, in[0, T] ,

then o (w* (t;)) = 0 andw* (t;) = w, on[O, T] .

Proof. By result C.2.0.1, if the switching function is nonpositive and the growth is zero

then the switching function must be constant throughout] . Therefore
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o(w* (t)) =o(w,) <0.If o(w,) <0, then the juvenile fails to migrate to the target

X = a. Henceo (w* (t)) = o(w,) =0 on[0, T] . m

C.2.0.3 Result. Ifo (w* (t;)) = 0 andw* (t,) #0 atsometime¢, if0, T] ,then

the switching function remains zero for only an instant of time.

Proof. Assume that (w* (t;))= A, -0, k(w* (t;)) =0 and* (t;) #0 for some
t, 0[O, T] .Then%o (w* (t)) = -k, (w* (t,))w* (t,) >0 sincenv* (t,) #0 and
k (w) is assumed to be strictly decreasingvin . Therefore the switching function departs

from zero instantly, and hence remains zero for only an instant of time.

C.2.0.4 Result. Ifo (w,) #0, ando (w* (t;)) = 0 fort, in[O, T] , then the

switching function remains zero for only an instant of time.

Proof. | proceed by showing thatdf (w,) #0 ,amd(w* (t))) =0 fgr [®,T]
thenw* (t,) #0, and hence by result C.2.0.3, the switching function will remain zero for
only an instant of time. W* (t;) = 0 , then by corollary C.2.0.2

o (w* (t,)) = o(w,) #0, contradicting the hypothesis th@{w* (t;)) =0

Therefore w* (t,) #0 , and by result C.2.0.3, the switching function remains zero for

only an instant of timem

Armed with these results, | will explore all possible optimal strategies.

C.2.1 The case wherg (V, (W), W,) = 0
In this case, the juvenile can initially only maintain its weight by swimming at its

maximum growth velocity—all other velocities lead to weight decrease. By corollary
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C.2.0.2, itis impossible for the switching function to be initially negative, leaving only the
possibilities that the initial value of the switching function positive or zero. These

possibilities are examined below.

C.2.1.1 Switching function initially zero.

If o(w,) = 0, then by result Result 6.2, switching function and the growth rate remain

zero throughouf O, T] , and the canonical equations are

A, = 2N, (1) 9 (Vg (W* ), w*) + 2Bk, (w*) (C.12)
W* = g(\Nlg (w*),w* (t)) =0 (C.13)
A, =0 (C.14)
X* = [0, Upax= Vg (W) ] O [Vg (W*), Upyay + Vg (W) ] (C.15)
wherev* may be chosen ag(w,)  or,(w,)  at each timgoinT] . When

T (Vy (W) +Upn,) <a, | can rule out this possibility, for by (C.15 < Upaut Vg (W)

and the juvenile has no hope of migrating a distan@e of withinTime , therefore | will
assume that (V, (Wo) +Up.) =a . T (V, (W) +Uy.) = a , then (C.15) becomes

X* = Vy(Wp) + Upnay Since this is the only choice of amd  satisfying the boundary
conditionx (T) = a. IfT (v, (W) +Un.) >a, equation (C.15) leaves infinitely many
choices forx* , and it is only necessary ®&r(T) = a . Do each of these choices yield
the same value of the objective functional? If so, then a maximizing displacement path is

not unique.
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Let x* represent any displacement path satisfyiQ@) = a . Then the objective

functional becomes

T

— [ (X (O] +Q) Bk (w* (1)) dt+ @ (w* (T))

T

— [ (X ()] +2) Bk (wp) dt + P (wo) (Sincew (1) = W )

T

= 6Kk (Wo) [ (%* (1) +)dt+ ® (wg) (Sincex (1) 20)

T

-k (w,) 8 (a+TC) +D(w). (SinceP'(* (Hdt =a)

Thus all solutions to (C.15) yield the same value of the objective functional, and hence all

are maximizing displacement paths.

C.2.1.2 Switching function initially positive.

If the switching function is initially positivej.€., o (w,) > 0), then the optimal
swimming velocity is at least as great as the optimal growth velao@ty (

V' (A, A, (0), Wp) =7, (W) ), and sinceg (v, w) is concavein |

w* (0) =g (V (A, A, (0), W), We) <g(V (W), W) = 0, demonstrating that growth

is initially nonpositive.

| next examine the case where growth is initially negative. Since the growth function is
concave irv , his can occur only whep(w,) <V,.., . Is it possible for the juvenile to later
grow back to sizav, withintim& ? The answer is no. Otherwise, there exists a time

t, >0 such thatw* (t;)) = w, anav* (t;—-¢€) <w, forai>0 ,whetg—-€>0
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Because | assumed that the switching function was initially positive, then the switching
function must also be positivefat , sirméw* (t,)) = o(w,) >0 , and therefore by the
concavity of the growth functiom (V' (A}, A, (t,) , Wp), Wp) <90 (T/g (Wp),w,) . Nextnote
thatw* (t;) —w* (t, —€) >0 and therefore* (t;) =0 .Bui* (t;) 20 contradicts our
earlier result thawv* (t,) = g(\Nf (AL A, (1), Wo), We) <g(Vy(W,), W) =0 . Thus
when the switching function is initially positive and growth initially negative, the

juvenile’s weight immediately falls below, , and remains belaw

If the growth function is initially zero, then

g(\~/()\1,)\2(0),w0),w0) = g(Vy (W), W) = 0, and therefore

v (AL A, (0), Wo) = Vy(Wo) = Vpay | Show that it is impossible for weight t deviate
from w, on [0, T] . Suppose otherwise. Then there must exist atfime  such that

w* (t;) = w,, andw* (t;) #0 . Since the switching function was positivevat , it must

also be positive av* (t;) . Furthermore,

g(V (A A, (1), W (1)), W (1)) (C.16)

s.
*
1

g(V (Au A, (1), Wo), Wo)

= g(vmawWO) = 0

But this contradicts our hypothesis that (t,) #0 . Therefore weight never deviates
from w,. The switching function remains positive throughpOtT] and the juvenile
optimally migrates downstream at speed, + U,,., throughout. This can only occur when

T(Vmax+ umax) = a'
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C.2.1.3 Optimal initial value of the switching function.

| have now discussed some qualities of the solutions of the canonical equations in the
event thag (v, (W), w,) = 0 , and have discussed the outcomes resulting from the initial
sign of switching function. | found switching function cannot be initially negative, and so
can only be initially positive or zero. Under what conditions is it initially zero? | showed
that if theo (w,) = 0, thenT(\?gJ (wy) +Un,,) =a , otherwise the juvenile could not

reach its downstream destinati@an, within the allotted time, . Therefore, when

T (Vy (W) + Uy, <a the switching function is initially positive, and the juvenile begins

its downstream migration immediately at time zero.

On the other hand, what T (V, (Wo) + U =@ ? Is the initial value of the switching
function initially zero, or is it positive? To answer this question, | appeal to the objective
function directly, and evaluate it using the results of sections C.2.1.1 and C.2.1.2. In
section C.2.1.1, | showed that when the switching function is initially zero, the weight of
the juvenile remains at, througho[®, T] . In section C.2.1.2 | showed that when the
switching function is initially positive, andl (V... + U0 >a , the juvenile’s weight
remains belowv, throughouto, T] .Let* x* w,* represent the velocity,
displacement, and weight trajectories in the case that the switching function is initially

positive. Wheno (w,) >0 and (V,.ct Una) >a the objective functional is

T

— [ (" (O] +2) Bk (wy* (1)) dt+ @ (wy* (T))
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T

<= [ (" (O] +2) Bk (o) dt + P (W) - (Sincewy™ (1) <wo ,t>0)

T

~ Bk (wp) [ (%™ (1) + ) di+ D (wo)  (Sincexs* (1) 20)

-0k (W) (a+ TC) + D (wy) . (Objective func.whem (w,) = 0 )

This string of inequalities demonstrates that when the switching function is positive
initially and T (V. + Unay) > @, the value of the objective functional is inferior to that of
the objective functional when the switching function is initially zero. Therefore the

switching function is indeed initially zero.

In conclusion, wheneveg (v, W,) = 0 anid(v, (Wy) + U0 <0 , the switching
function is initially positive, and as a result, the juvenile begins its migration at time zero.
If on the other hand (v, w,) = 0 T(V, (W) +Upna) 20 , anb(Vyet Una) >a , then
the switching function is initially zero, and an infinity of displacement paths are optimal

wheneverT (\7g (wp) +U,,) >0 (see section C.2.1.1).

The very last case | need to cover, is the case where

T (Vg (Wp) +Upa) = T (Vmax* Una = a. | showed earlier that when the switching
function is initially positive and~/g(wo) = Vo, » then weight remainssgt  throughout
[0, T] and the optimal strategy clearly consists of migrating downstream in the fastest
currentu,,,, , Swimming downstream at the maximum swimming spegd, . Any other
strategy does not allow the fish to arriveaat  within tilne . Interestingly, this strategy is

also covered by case where the switching function is initially zero. This suggests that there
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is no unique optimal initial value of the switching function, and that is only required to be

negative.

C.2.2 The case wherg (V, (W), W,) <0

In this section | examine the optimal juvenile behavior in the case where the initial growth
rate is negative. This is possible when food density is low, or standard and active
metabolism is elevated due to high temperatures. An important result in this case is that

the juvenile’s weight can never again reach  (OnT ]

C.2.2.1 Result. Ifg(V, (W), W,) <0, then the weight path remains below,

throughout (0, T] .

Proof: Suppose otherwise, so thpfV, (wy), Wp) <0 amtl (t,) =w, for same in

(0, T] . Since the weight path is necessary continuous in time, it is possible to assume
thatt, is the minimum time such thgt>0 awd (t,) = w, .Atanytipee , such
thate >0 andt, —€>0 w* (t, —€) <w, , and therefore* (t,) —w* (t,—€) >0
implying that D+ (t,) =0 . However, by hypothesis,

dt

%w* (t) = g(v* (t),w* (1)) < g(\~/g (w,), W) <0, yielding a contradiction. Hence

w* (t) <w,on (O, T] . m

C.2.2.2 Switching function initially negative?

Recall that the switching function is a decreasing function of weight. Therefore, if it is
initially zero (.e., A, — 6,k(w,) <0), by result C.2.2.1, it must remain negative
throughout[0, T] . This is impossible because the juvenile would never migrate to the

ocean. It is therefore impossible for the switching function to be initially negative.
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C.2.2.3 Switching function initially zero?

By result C.2.0.3, if the switching function is initially zero, then it can remain zero for
only an instant of time. Therefore the switching function either becomes initially negative
or positive after timé = 0 . If it becomes negative, then it remains negative so that the
fish fails to migrate, which is impossible since by hypothegig,T) =a>0 . Therefore
if the switching function is initially zero, it immediately rises to a positive value. This is
also impossible since by hypothegfsr (wy) = -6k, (w,) W* (0) <O . Thusthe

switching function is not initially zero.

C.2.2.4 Switching function initially positive.

In sections C.2.2.2 and C.2.2.3 | showed that it is impossible for either the switching
function to be initially negative or zero, and therefore the switching function is initially
positive. This means that the juvenile begins migration immediatély-ab , Swimming
a rate faster than the optimal growth velocity, and in the swiftest current, and continues
this behavior as long as the switching function is positive. Does the switching function

remain positive? If it does, then

T T
a=x*(T) =Iv' (AL A, (1), wr (1)) dt+ Tqﬂax>‘[\7g (w* (1)) dt+ Ty, (C.17)
0 0
If (C.17) fails to hold, then at some point in time, $ay  in the intefQall ) , the
switching function must eventually fall to zeice(, o (w* (t,)) = 0) but by result
C.2.0.4, remains at zero for only an instant of time.tLet be the minimum time at which
this occurs. If the switching function becomes positive immediately igfter , then

%0 (w* (t)) = 0, and consequentlgto(w* (t,)) = —k, (W* (t))W* (t) =0 ,
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implying thatw* (t,) = 0 sincek(w) is strictly decreasingvin . By corollary C.2.0.2,
the switching function must then be zero throughidtT] . This contradicts the
hypothesis that the switching function is initially zero, and therefore, at least at the very
first time the switching function reaches zero the switching function is negative
immediately aftet, . During the time when the switching function is negative, the juvenile

holds its station at* (t;) , swimming against the current at its optimal growth velocity.

If the juvenile has not reached tat i.e( x* (t,) #a), then at some point in time it must
begin migrating downstream again, and therefore, once again the switching function
becomes positive. This can only occur if at some time gfter the juvenile’s growth rate is
zero and the switching function is negative. However, by result C.2.0.1, this implies that
the switching function is a negative constant oM@rT] . This contradicts the hypothesis
that the switching function is initially positive. Therefore the juvenile must reach position

X = abyt,.

C.2.2.5 Summary of behavior whery (v, (W,), w,) <0 .

In summary, it was shown that when the growth function is initially negative at the

optimal swimming velocity, then the juvenile begins migration immediately at time zero,
and does not cease to migrate until it reaches its final destinakion at . Upon reaching
X = a, it holds its station, migrating against the current at its optimal growth velocity

until time T .

When does the juvenile arrivexat= a  ? Sinde(t) < U, +Vnax  there is a lower

bound fort, , namely
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a
(U Vi)~
Furthermore, if the optimal growth velocity does not vary too much pOet;] , then an
approximateupper bound is given by

&
umax+ Vg (WO) .

C.2.3 The case wherg (v, (W), w,) >0

In this case, the juvenile initially is able to grow by swimming at its optimal growth
velocity. There is the possibility, however, that in order to achieve its downstream
migration target in the allotted time, it will be unable to travel at its optimal growth

velocity, and may even have to settle for negative growth. This is one of the several issues

examined in this section.

As before, | proceed by considering the initial sign of the switching function.

C.2.3.1 The case where the switching function is initially negative.

At least intuitively, it is not possible to rule out the possibility that the switching function
is initially negative when the juvenile has positive initial growth potential. For if time
permits, the juvenile could reduce its overall predation risk by initially taking advantage of
its growth opportunity and minimizing its predator encounter rate, then running the

gauntlet of predators at a larger size.

Assuming that the switching functiainitially negative, then the juvenile holds its

station atx = 0 , swimming against the current at is optimal growth velocity. Since
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growth is then initially positive and the switching function is an increasing function of
weight, the switching function is also increasing. The switching function must increase
above zero at some time, otherwise, no downstream migration would be possible. Let
t, > 0 be the first time that the switching function reaches zero. By corollary C.2.0.2, the
growth function and the switching function cannot be simultaneously zéro at
Therefore, eithew* (t,) >0 , ow* (t;) <0 . Sindg¢ is the first time that the switching
function reaches zer%o (w* (t,)) >0 , and since the switching function is a strictly
increasing function of weighty* (t,) >0 . Thus immediately after , the switching
function increases above zero, and the juvenile begins migrating downstream at a velocity

greater that its optimal growth velocity and in the swiftest current.

Does the switching function, once it rises above zero, later turn around and descend to
zero? | show that it cannot. Suppose the switching function does display this behavior, so
that there exists a minimum tinbg>t,  such togw* (t,)) = o(w* (t,)) =0 .By
corollary C.2.0.2, the switching function and the growth function cannot be zero
simultaneously, otherwise (w* (t,)) = o(w,) <0 , contradicting the hypothesis that

o (w* (t,)) = 0. Therefore the switching function must be negative immediately after

t;. Consequentlyg—to (w* (t,)) <0 which in turn implies that (t,) <O . Since

w*r (t) = w*r (b)),

W (L) = g(Ve (W* (1), W) = g (Vg (W* (L)), w* () = W* () <O.

This contradicts the early finding that (t,) >0 . Therefore it is impossible for the

switching function to fall back to zero once it becomes positive.
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C.2.3.2 The case where the switching function is initially nonnegative.

If the switching function is initially nonnegative, then the juvenile initially swims
downstream at a velocity greater than the optimal growth velocity until the switching
function becomes negative or it reaches its destinatign-ofa . Actually, I will show that
it is impossible for the switching function to become negative, and the migration will not

terminate before at timé

Suppose that the switching function turns negative, so that there existstagiime such
thato (w* (t;)) = 0 ando (w* (t;+¢€)) <0 forang >0 sufficiently small. Once
negative, the switching function must remain negative througfiour | , otherwise it is
possible to use corollary C.2.0.2 to show that the switching function is zero and the weight
path are constant ovg0, T] , violating the hypothesisdta (w,) , w,) >0

Therefore the juvenile’s migration must terminaté,at , whé&rét) = a . During the
time period[t,, T] , the juvenile holds its station, and swims against the current at its

optimal growth speed.

| proceed by showing that the above scenario is never optimal, because there exists
another strategy which is superior. Let fish 1 follow the velocity trajecterig$ and

u, (t) outlined in the above paragraph, and as usual lg) walt represent the
displacement and weight paths. Now consider a juvenile, hereafter referred to as fish 2,
adopting velocity curves, (t), u,(t)  with corresponding state paiig) , w, (t) , such

that its initial weight isw, , where

V(1) = v (t+t),u,(t) = u (t+t) whent<T-t,, (C.18)

Vo (1) = vi(t=(T-1)), U (1)

v, (t—(T-1)) whent=T-t, . (C.19)
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| show that the strategy of fish 2 is superior to that of fish 1. In the first step, | demonstrate

that fish 2 satisfies the terminal conditio{T) = a . This is true because

T-4 T

Pa(dt= [ @dt+ [ % (1)dt

T

=0+ [ X (t)dt (Sincex, () =0 on(0, T-t) )
= I)'(z(t— (T-1,))dt (By (C.19))
= lez(t)dt = a. (Sincex, (t;) = a).

Next, | derive a series of results used to show that the strategy of fish 2 is superior to that

of fish 1.

Initially, both fish weighw, . On the intervdlo, T-t,] , fish 2 follows the autonomous

differential equation

W = g(Vy(w),w). (C.20)
There are two possibilitiesv, (T—-t,) >w,;(0) aov,(T-t) <w,(0) . Suppose the
second of these possibilities prevails. Sing€0) = w, qd, (W) , Wo) >0 , there
must exist atime, if0, T—1t] suchthat(t,) = 0 . Butthisimplies that,) is a
stationary point of (C.20). Since it is impossible for a path arising from an autonomous
differential equation to reach a stationary point if it begins away from it,

W, (T-1t,) >w, (0) is the only possibility.
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| now compare the weight of fish 2 oveF - t;, T] to the weight of fish 1 ¢Oet; ]
Our claim is thatv, (t) >w, (t— (T-1t)) whehn=T-1t, .For convenience, define
W (t) =w, (t—-(T-1t)),andV,(t) = v, (t—- (T-1t)) , sothat our claimis
equivalent tow, (t) >W, (t) when=>T-1t, .BotW,(t) ama,(t) follow the

differential equation

w =g (v (t),w), (C.21)
butW,(T-1t) = w,, whilew, (T -1t,) >w,, as demonstrated earlier. If at some time
t;>T-t,, the weight pattw, and, coincide, then the uniqueness of solutions of
ordinary differential equations is violated, and therefay¢t) > W, (t) as claimed

earlier.

Next, | show that the weight of fish 2 ovEd, T — t,] dominates the weight of fish 1 over
[t, T], (e, w,(t) >w, (t+t,) fortin [0, T—t;] ). This time define
W, (t) = w, (t+t;). Our claim is equivalent tav, (t) =W, (t) of0, T-t;] .Both

w, (t) andW, (t) follow the differential equation

W = g(v(t),w), (C.22)
butw, (0) = w,, whileW (0) <w, (this follows since the switching function is zert at
and positive a0 ). By uniqueness of solutions to ordinary differential equations,

w,(t) =W, (t) on [0, T-1,] .

| next appeal to the switching function to demonstratewhdl) < w, (T) . Suppose
otherwise, so that, (T) >w, (T) . Sincee,(t) >w,(t+t,) for O, T-t] ,
w, (T) >w, (T) >w, (t,) . Since the switching function is increasing in weight,

o(w,(T)) >o(w,(t,)) = 0. This contradicts the earlier finding that the switching
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function must remain negative aftgr . Therefore the terminal weight of fish 2 is at least as

large as that of fish 1.

Armed with these results, it is now possible to show that fish2 has a greater objective
functional value than fish 1. Evaluating the difference in objective functional values for

fish 1 and fish 2 gives

T T

~ [ (% (O] +2) Bk (w; (1)) dt + & (W, (T)) + [[(|x0 ()] + ) Bk (wy (1) ) dt = ® (wy (T))

>~ [ (% (1) +2) Bk (wy (1) ) dt+ [ (%, (1) +) Ok (wy (1)) cit

T-4 T

>= [ 20K (wy (1)) dt= [ (k+Q) Ok (ws (1)) c

t

+J'19k(W1(t))dt+jl(>'<1(t) +) Bk (w (1)) dt

T-t

= - [ 20K(W (D) dt— [ (% (1) +2)Bk(w, (1)) ot

T-1 T

[ Ok (w(t+t))di+ [ (% (1) +0)Bk(w (1= (T-1)))dt

T-1

=00 [ {k(w, (t+1)) —k(wy (1))} dt

T

LA GM8,+8)k(w (1= (T-1))) - (% ()8, +8,) k(w, (1)) } dt

1



261

> [ {0, +8)k(w, (t=(T-1))) = (% (1) 8, +8,) k(w, (1)) } dt

1

>0.

Thus the value objective functional of fish 2 exceeds that of fish 1. Therefore it is
impossible for the switching function, assumed initially positive, to fall to a negative value

in the interval (0, T) . Furthermore, if it ever becomes zero, it must do so exagtly at

C.2.3.3 VaryingT.

Now that behavior in the case where the switching function is initially nonnegative has
been described, it is useful to know whether it can possibly happen. The answer is yes. For
example, ifT is chosen such th@tl,,,,+V.,.) T = @ , then the migration rate must

remain atu,,,.+ V.., throughoufO, T] in order to achieve the downstream target of

X = a. This is possible only when the switching function is initially nonnegative.

Intuitively, the switching function must be nonnegative initially whengver,, + V.0 T

barely exceeda . On the other hand(uf,,,+ V. T iIs much greaterahan , then the
juvenile can afford to delay migration initially and spend its early days growing at its

optimal rate and avoiding predators.

C.3 Summary
The possible behaviors of the maximizing paths are simple to enumerate. One of the

following three behaviors is optimal:
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S1. Initially, the juvenile holds its stationyxat= 0  swimming against the current at its

optimal growth speed. At some critical weight, it begins migrating downstream,
swimming in the swiftest current, and actively swimming downstream at a speed

greater than its optimal growth speed. The juvenile does not xeach T until

S2. The juvenile begins migrating immediately after emergence swimming at a speed

greater than or equal to its optimal growth speed, and in the swiftest current. It
ceases migration only when= a . If the juvenile reaches béfore ,then it

holds its station aa , swimming against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims

downstream at its optimal growth speed, or against the current at its optimal

growth speed, and migration upstream is not permitted.

The strategies are exhaustive and the optimal one is determined by examining the sign of

the growth function and swimming function (TABLE C.4).

Strategy S1The strategy is characterized by initial station holding. It occurs only when

g (Vy (Wo), Wo) >0, andT (Uyaxt Ve IS sufficiently larger thaan

Strategy S2The strategy is characterized by initial migration. It occurs under a variety of

conditions:

Wheng (v, (Wp) , W) >0 andT (Uy.+ Vimay IS NOt sufficiently greater than
Wheng (v, (Wp) , Wp) = 0 andT (Uy,,+V,(W,)) does not excead

Wheng (v, (W), w,) <O.
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Strategy S3This is actually a class of strategies—infinitely may strategies are optimal.

This occurs whemy (v, (Wy) , Wo) = 0 anl (U, + Vy(W,))  is greater than

TABLE C.4 Optimal strategies based on the initial sign of the growth and switching
functions.

0 (W) <0 o(wp) =0 o (w) >0
g (vy (Wp), w,) <0 Impossible Impossible S2
g(v,(Wo),W,) =0 Impossible S3or$2 S2
g (vy (Wp),w,) >0 S1 S2 S2

a Strategy S3 applies whdn(u_ . + Vg (wg)) >a , S2 otherwise.

max



APPENDIX D NUMERICAL METHODS

This appendix outlines the methods used to solve the optimal control problem in the case
where the solution does not admit a singular path, when the switching function is always
o= 0, (i.e., the co-state variable associated with displacement is positive, the maximum
current velocity exceeds the maximum swimming velocity, and the only control parameter
is t;,—the time of estuary entry. Under these assumptions, the system of four canonical
equations (two state and two co-state equations) are easily specified, along with their
boundary conditions. Three of the boundary conditions are specified by end conditions on
the state variablex(0) = 0 w(0) = w, ,amdt) = a .And a fourth condition is
supplied by a transversality conditiag(t) = ®, . Since the control paraneter, , is
unknown, it will need to be determined as well. In the standard treatment of optimal
control, this control parameter is determined by using a second transversality condition,

namely

H+®, =0, (D.1)
whereH andb, are evaluated at the optimal terminal states and co-states. However,
temporal fluctuations in model parameters can make the fitness curve contain multiple
maxima and minima, so that solutions of (D.1) can be misleading. Therefore | adopt the
more conservative approach broken into three basic steps: First, | of solve the canonical

equations for many fixed valuestf , obtaining a plot of how the value of the fithess
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functional varies with; ; secondly, | bracket the optimal value through visual inspection;
lastly, |1 use a standard one-dimensional numerical function maximizing routine to locate

the best value of .

This solution technique requires two types of numerical algorithms—a method for solving
a two-point boundary value problem described by the 4 canonical equations along with
their four boundary conditions, and a maximizing routine to identify the optimal estuary
entry time, and to identify the controls that maximize the values of the controls that
maximize the Hamiltonian. To solve the two-point boundary value problem, | use the
shooting methada method that is essentially a root finding routine with a built-in

integration routine.

D.1 The shooting method

The shooting method starts by solving the canonical equations using the two known initial
conditions,x (0) = 0 andv(0) = w, , and two guesses for the initial co-state values,
say5\1 (0) anda\2 (0) . The resulting terminal states are then evaluated to see how close
they come to satisfying the known terminal constram(s;) = a and

A, () = @, (w(t),t). The error, represented by the a discrepancy vé¢tahere

H _ X(t) —a
Fof A, (1) 0, (W(t), t)
is then used to construct better estimates of the initial co-state variables (I use Newton-

Raphson), and the process repeats. When the terminal constraints are satisfied (to within a

specified tolerance), and the solution paths are output (FIGURE D.1). | use the routine



266
shoot()for the shooting method, along with the numerical integration rootamt() that

implements Runge-Kutta with adaptive step size control (lteds 1988).

procedure shooting method begin t=0

initialize A1(0), A»(0), x(0), w(0)

initialize A\

do
begin

A1(0), A5(0) <— newton raphson AA, A4(0), A5(0), x(0), w(0)
end

while(not terminal condition)

FIGURE D.1 Pseudo code for the shooting method.

Each step of the Newton-Raphson algorithm requires building a 2x2 matrix containing
partial derivatives of the discrepancies calculated by finite differencing. Finite
differencing requires an increment vectansee FIGURE D.1), and building the matrix

requires three passes of the routdeint().

D.2 Overcoming difficulties of the shooting method

As mentioned before, this implementation of the shooting method is essentially a Newton-
Raphson algorithm that builds a matrix of partial derivatives by finite differencing to
update its solution estimate. Choosing good increm&hts: [AA, (0), AA,(0)] for
numerical derivatives is crucial for the success of shooting. If the increments are too large,
round-off error can make the solution lose meaning, and if too large, the terminal values of
the state and co-state variables may whiplash so that the finite differences do not

adequately approximate the partial derivatives.
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Another difficulty arises in choosing good estimates of the unknown initial co-state
variables. The Newton-Raphson method will work only when the discrepancy ¥ector,
varies smoothly in a neighborhood of the solution, and if the initial guess is close enough
to the actual solution. In the vicinity of the root, the method performs well, converging

guadratically.

Both of the difficulties mentioned above can be overcome by finding good initial estimates
of the initial co-state variables. These estimates would give a good idea of the scale
appropriate for choosing the incrementsathd put the guesses close enough to the actual
solution to allow quadratic convergence of Newton-Raphson. Fortunately, some important
gualitative knowledge about the optimal paths of the state variables, and information

about the optimal controls assists in choosing these values.

My approach proceeds by solving the canonical equations backward in time to the initial
states and co-states, starting with reasonable estimates for the terminal state and co-state
variables. Doing this requires good estimates of the terminal weight (weight at estuary
entry) and the approximate time that the switching function is zero. A good estimate of
terminal weight is obtained by recalling that early juvenile behavior is governed largely by
feeding and predator avoidance, with the juvenile optimizing its food intake. This means
that its terminal weight is approximated by the weight achieved by maximizing its growth
over the time horizon—call iv,,,, . The terminal value of the co-state variable associated

with weight can then be approximated using the relationship

)\2 (tf) = q)W (W (tf) ’ tf) D(DW (Wmax1 tf)
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Another quantity that can be estimated is the time the switching function is zero.
Assuming that migration occurs mainly at the end of the time horizon, and approximating
the travel time by assuming that the fish migrates in the swiftest current and at a
swimming speed that maximizes its growth, it is then possible to solve the displacement
backwards from the terminal conditions= w,,,, and a to the point in time that
x = 0. This time approximates the time that the switching function is zero. At this time,

referred to as the switching time, ..,

O =0 = )\1 (tswitcr) - k (X(tswitch) ’ w (tswitch) ’ tswitch) ’

giving an estimate fok, (ts,i.)  that | use to estimaj¢t,) . I should point out that will
not always be a good estimate, especially with a large degree of spatial heterogeneity

modelled, but for most of my numerical work the estimate was adequate for convergence.

Given the approximations of the terminal values of the co-state variables, the weight
variable, and the known value of the displacement variabte,a , | solve the canonical
equations backward in time to estimate the initial valueg ahdx,. This method of
estimation, applied in CHAPTER 6 resulted in convergence usually within 4-6 Newton-
Raphson steps. (Note however, that algorithm tolerances also determine the number of

necessary steps.)
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D.3 Diriver for shoot

| have included a documented C program code that drives the fusktot(). It is

contained in the program fitarget.c. The methods and argumentshbbot()are found in

FIGURE D.2.

void shoot(nvar, v, delv, n2, x1, x2, eps, hl, hmin, f, dv)
int nvar, n2;
double Vv[], delv[], x1, x2, eps, h1, hmin, f[], dv[];

Improve the trial solution of a two point boundary value problenm¥ar coupled ODEs [ordinary
differential equations] shooting frori to x2. Initial values for theavar ODEs atx1 are generated
from the coefficients[1..n2], using the user-supplied routitead. The routine integrates the ODHs
to x2 using the Runge-Kutta method with toleraeps initial step sizénl, and minimum step size
hmin, At x2 it calls the user-suppled routiseoreto evaluate the [discrepancy] functidfis.n2]
that ought to be zero to satisfy the boundary conditior®. aflulti-dimensional Newton-Raphson i
then used to develop a linear matrix equations for the incremhgiitsn2] to the adjustable
parameters. These increments are solved for and added before return.

4

FIGURE D.2 Arguments and method of the routisteoot() (Pres<set al, 1988).

target.c

[* Driver for routine SHOOT */
[* Solve for lambdal(0) and lambda2(0) using */

#include <stdio.h>
#include <math.h>

#include “nr.h” /* contains Numerical Recipes declarations */
#include “bio.h” [* contains declarations of biological functions */
#define NVAR 4 [* number of state and co-state variables */
#define N2 2 /* number of unknown initial conditions */

#define DELTA 1.0e-3

#define EPS1.0e-10 /* tolerance in Runge-Kutta */
#define DEPS1.0e-7

[* TABLE of global variables

*

* * F

T - time of estuary entry (final time)
a - migration distance
init_lambdal - initial lambdal
init_labmdaz2 - initial lambda2

/* used to scale increment for finite differences */
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*/

[* TABLE of states and co-states
* y[1] - weight state

y[2] -lambda2 co-state

* y[3] - displacement state

* y[4] -lambdal co-state
*/

*

[* used by shoot set the initial values of the states and co-states */
void load(x1, v, y)
double x1, v[], YII;

y[1] = init_weight;

y[2]= v[1];
y[3] = 0.0;
y[4] = v[2];

[* used by shoot to build the discrepancy vector f */
void score(x2,y,f)
double x2,y[].f[];

double dphidw(); [* partial of phi with respect to w */

f[1] = y[2] - dphidw(y[1], x2);
fl2] = yI3] - &

/* the main driver for shoot */
void target()
{

double h1,hmin,x1,x2;
double delv[3],v[3],dv[7],f[7];
double guess_lambdal();
double guess_lambda2();
double 12_guess;

V[1] = guess_lambda2(); [* estimate of initial lambda2 */

v[2] = guess_lambdal(); [* estimate of initial lambdal */

I2_guess = Vv[1]; [* save for convergence criterion */
delv[1]=DELTA*v[1]; [* increment in lambda2 for partial derivs */
delv[2]=DELTA*v[2]; [* increment in lambdal for partial derivs */
h1=0.1; /* initial step size for Runge-Kutta */
hmin=0.0; /* minimum step size for Runge-Kutta */
x1 =0.0; * initial time */

x2=T, [* final time (estuary entry time) */

do{
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shoot(NVAR,v,delv,N2,x1,x2,EPS,h1,hmin,f,dv);
} while (fabs(dv[1]) > fabs(DEPS*I2_guess) || fabs(dv[2]) > fabs(DEPS * a));

init_lambda2 = v[1]; /* set global variable to best est. of lambda2(T) */
init_lambdal = v[2]; /* set global variable to best est. of lambdal(T) */
return;

D.4 Maximization routines

There are two optimization algorithms incorporated, the first, to solve for the swimming
velocity that maximizes the Hamiltonian, and the second to maximize the fitness
functional with respect to the estuary entry time. In the former case, | use Brent's method
with derivativesdbrent() (Pres<et al, 1988). Maximizing the Hamiltonian with respect

to swimming velocity requires simple function evaluations based on the growth function
and its derivatives, as well as values and derivatives of the switching function. Recall that

when the switching function is negative, we seek to maximize

g(v, x w 9, with derivativeg, (v, X, w, 1)

and when the switching function is positive, we seek to maximize

oA, x,w )v+g(v x w ) with derivativeo (A, X, w, t) +g,(v, X w, 1) .

To determine the optimal paths, these maximization problems need to be solved for every

step of the numerical integration routine.

| use the routinérent() (Prest al, 1988), a method based solely on function values, to
maximize the objective functional with respect to estuary entry ime, . Every function

evaluation of the method involves solving the two-point boundary value problem using
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the functiortarget() described above. Sintarget() itself requires intensive computation,

the function evaluations are expensive.
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