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Introduction 
 

All living organisms must interact with an external environment and should 

respond to it in a way that maximizes their probability of reproduction and survival.  If an 

organism can learn, it will be able modify its behavior based on environmental feedback 

and potentially increase its survival probability.  The processes underlying learning and 

behavior are of interest to researchers in cognitive science, psychology, artificial 

intelligence (AI), animal behavior, and ecology among others.  However, the problems 

faced by a learning organism in a natural environment are daunting.  Due to the 

complexity of the problems and processes involved, research on learning and behavior 

often focuses on highly simplified problems. 

One way to simplify the learning problem is to treat it as a multi-armed bandit 

problem.  In a multi-armed bandit problem an agent is presented with a set of possible 

actions and on discrete trials the agent must choose exactly one of these actions.  Based 

on the action chosen the environment returns a reward to the agent, and the process 

repeats.  The paradigmatic ecological example of this problem is a foraging bee.  

Consider a bee presented with a field of red and yellow flowers that provide nectar 

rewards.  There are two possible actions for the bee, feed on a yellow flower or feed on a 

red flower, and the bee can only do one of these actions at a time.  Each flower provides 

nectar rewards, and different types of flowers provide nectar rewards with different 

distributions.  Based on the sequence of nectar rewards obtained, a learning bee should 

modify its behavior and visit the more rewarding flowers more frequently. 

Of course the real problem facing the bee is enormously more complex than this 

caricature, involving complicated sensory association and identification issues.  

Moreover, in many situations behavioral choices do not take place on discrete trials, but 

instead must be made continuously in response to changes in the environment.  

Nonetheless, choice problems can often be abstractly formulated as multi-armed bandit 

problems, and many models for learning and choice behavior treat them as such (Bush 

and Mosteller, 1955; Sutton and Barto, 1998; Narendra and Thathachar, 1989; Keaser et 

al, 2002).  Importantly, a common experimental procedure from psychology, the discrete 
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trials procedure, essentially presents a multi-armed bandit problem, and many 

mathematical learning models from psychology utilize the bandit framework. 

Mathematical learning models were introduced into psychology in the 1950s (e.g. 

Bush and Mosteller, 1955) and their mathematical properties were examined intensely 

over the following decades (e.g. Luce, 1959 and Norman, 1972).  Models of this sort 

continue to be proposed as explanations for animal behavior (Lea and Dow, 1984; Weber 

et al, 2004; Keaser et al, 2002) but in recent years less effort has been devoted to formal 

mathematical analysis of such models.  

The models studied in psychology are closely related to learning automata (LA) 

(Narendra and Thathachar, 1989) models from artificial intelligence, and in fact many LA 

models derive from models in psychology.  Despite the close similarity and common 

origins, research in the two disciplines has proceeded largely independently.  The AI 

work on LA models has produced a mathematical formalism for organizing, analyzing, 

and discussing learning models.  On the other hand, researchers focusing on animal 

behavior have produced a diverse array of models motivated by empirical data, but these 

models are often presented without a unifying framework to facilitate discussion.  As a 

result, the relationships between models are often opaque, and it is not always apparent 

whether the mathematical results from one model will apply to others. 

This thesis will explore the mathematical dynamics of some simple learning 

models in the context of several discrete trials foraging experiments.  The vocabulary and 

formalism from LA is used throughout in order to organize the diversity of published 

models.  Using the LA terminology, and some additional definitions, I will prove several 

analytic results for a special class of LA models, which I call driven estimator learning 

automata (DELA).  DELA type models appear frequently in the literature and have some 

nice mathematical properties in the context of discrete trial experiments. 

The purposes of the thesis are threefold.  First, I hope to introduce a framework 

for thinking about learning models, taken largely from LA, which can be used to organize 

the models published in psychology and animal behavior.  Second, I want to establish 

some formal analytic results about DELA models and the behavior they predict in some 

common discrete trials experiments.  Finally, I want to numerically evaluate the 
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performance of some of these models with respect to published data from a sequence of 

discrete trials foraging experiments using starlings (Sturnus vulgaris).   

 Although a variety of discrete trials experiments are treated, many of the 

experiments discussed in later chapters focus on risk-sensitive foraging:  the way in 

which animals respond to variability or uncertainty in the rewards provided by the 

environment.  The basic risk sensitivity experiment (BRSE) presents an organism with a 

choice between two foraging options:  a constant option that always provides the same 

reward and a variable option that provides either a big reward or a small reward 

stochastically but with the same mean value as the constant option.  One of the main 

analytic results (presented in Chapter 5 and called the hot stove effect) is that, given some 

constraints on model form, DELA models predict uniformly risk averse behavior:  agents 

using a DELA learning method will prefer the constant food source on the BRSE.   

 The thesis is structured as follows.  The first chapter introduces the LA formalism 

and then expands this framework to introduce DELA models.  Chapter 2 discusses some 

issues with applying DELA models to living organisms and presents a framework for 

doing so utilizing three elements:  utility functions, estimators, and choice functions.  

Utilizing the terminology from the first two chapters, Chapter 3 explores model behavior 

on, and derives predictions for, a simple discrete trials experiment.  Chapter 4 then 

reviews the main results from, and models for, risk sensitivity.  Chapter 5 proves that a 

large class of DELA models will be uniformly risk averse on the BRSE.  Chapter 6 

explores a model that is capable of generating risk prone behavior and examines the 

predictions of this model for a set of honeybee foraging experiments.  In Chapter 7, I use 

simulations to evaluate model performance with respect to a larger set of experiments 

using starlings.  Finally, the Conclusion discusses the ramifications of these results and 

suggests some expansions of the DELA framework.
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Chapter 1  Learning automata 

 

 A gambler is led to a room containing four different slot machines.  Each machine 

pays out rewards with a different distribution, but these distributions are unknown to the 

gambler.  The gambler is told that she has 1000 free plays to distribute amongst the slot 

machines as she sees fit.  How should the gambler allocate her plays in order to maximize 

the rewards she receives? 

 Each morning a starling (Sturnus vulgaris) is placed in a box for a three hour 

experimental session.  The box contains two keys and a food dispenser.  Each key can be 

illuminated with either a red or a yellow light, and the bird has been previously trained 

that pecking at the keys can elicit a food reward from the dispenser.  The experiment 

consists of 30 trials per day over the course of a week.  On each trial, both keys light up 

simultaneously, one red and one yellow; if the bird presses a key while it is illuminated, 

both lights extinguish and the food dispenser delivers a reward after a short delay.  Both 

keys can take on both colors over the course of the experiment, and the colors of the keys 

are associated with different reward distributions.  This experimental set up is depicted in 

Figure 1.1 with a possible sequence of choice trials.  How will the Starling allocate its 

choices over the course of a week? 

 Each of these scenarios represents a reinforcement learning problem:  an agent 

learns about stimuli or actions only through the rewards associated with them, and must 

select future actions on the basis of the rewards previously obtained (Dayan and Abbott, 

2001).  The first scenario is a special type of reinforcement learning problem, known as 

the multi-armed bandit problem, so called because slot machines are affectionately 

known as one-armed bandits.  The multi-armed, or k-armed, bandit problem has been 

explored extensively in the statistical and artificial intelligence (AI) literature (Berry and 

Fristedt, 1985; Sutton and Barto, 1998).  If the reward distributions do not change over 

time, the optimal solution to this problem is to find the slot machine with the largest 

expected payoff and choose that machine exclusively.  There are many ways to do this, 
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Keys

Food dispenser
 

Figure 1.1  A sequence of choice trials from the bird in a box experiment.  The box 
contains two keys and a food dispenser.  On choice trials, both keys light up and food is 
provided when the Starling presses one of the keys.  The size of the reward is associated 
with the color of the key.  (After Bateson and Kacelnik, 1996). 

however, and much work has focused on deriving solutions to the problem that are 

efficient or optimal in some way.   

 The second scenario depicts a discrete trial operant conditioning experiment; a 

common experimental paradigm in psychology.  This ‘bird in a box’ experiment is 

largely equivalent to a 2 armed bandit problem:  the two colored keys effectively 

represent different slot machines, and the bird can choose to ‘play’ one of these machines 

on each trial.  Researchers studying animal behavior are mainly interested in determining 

or modeling how organisms solve such problems rather than looking for the best way to 

solve the problem. 

Despite the difference in focus across disciplines, many models for animal 

behavior utilize the same basic framework as solution methods from AI.  Any solution to 

the multi-armed bandit problem must specify a decision mechanism that chooses the next 

action based on the history of rewards obtained.  Learning automata (LA) is a branch of 

AI that provides a simple framework for formulating decision mechanisms in the context 

of the multi-armed bandit problem.  The LA models have strong connections to classical 

mathematical learning models from psychology.  For example, the learning models of 

Bush and Mosteller (1958) are basic LA and many recently published models for animal 

behavior can also be formulated as LA (e.g. Keaser et. al., 2002; Shapiro, 2000; Weber et 

al, 2004). 

The LA formalism seems a natural fit for the bird in the box experiment given the 

similarity between the bird in a box and the multi-armed bandit problem.  However, 

while the bird in a box experiment is equivalent to a bandit problem in many important 

ways, the bird in a box is actually faced with a much more complex problem.  Moreover, 
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the bird in a box experiment, while more realistic than the classic multi-armed bandit, is 

still highly artificial and contrived.  In natural environments, the decision problems faced 

by organisms are dramatically more complex and often fundamentally different in 

important ways.  I will return to these topics later in this chapter, but it will be important 

to keep in mind the ways in which the bird in a box problem is different from both the 

classic bandit problem and more natural behavioral choice problems. 

 

Formalizing the problem 

Our problem centers upon an agent that must interact with an external 

environment.  During discrete trials the agent can engage in actions, and these actions 

precipitate a response from the environment in the form of a reward.  The environmental 

response is stochastic, and a given action by an agent will not always result in the same 

response. 

 Within LA the problem is often formalized as follows (Narendra and Thathachar 

1989).   The agent has available actions, , and taken together these actions compose 

an action set, .  Each action corresponds to playing on one of the 

different slot machines; for the bird in the box there are 

k ia

1 2{ , ,..., }kA a a a=

2k =  possible actions:  press the 

red key or press the yellow key.  On each discrete trial the agent must choose one and 

only one of these actions; denote the agent’s choice on the  trial by .  Based 

on the action chosen, the agent receives some reward,

thn ( )a n A∈

( )r n R∈ , where  is the reward 

received on the  trial, and 

( )r n

thn R +⊆ \ is the set of possible rewards.  Associated with 

each action, , is a reward distribution, , that determines the reward provided in 

response to the action, i.e. 

ia n
iF

 . (1.1) ( ) Pr( ( ) | ( ) , )n
iF r r n r a n a n= ≤ = i

In general, these distributions can change over time and thus are conditional on the 

current trial number, .  Taken together, the reward distributions comprise a family of 

distributions, . 

n

1 2( ) { , ,..., }n n n
kn F F Fℵ =
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The LA environment can then be summarized by the triple , , ( )A R nℵ . 

Environments can be categorized based on their reward distributions, .  If the 

reward distributions change over time, the environment is called transient; if the 

distributions do not change over time, the environment is stationary, in which case 

, and .  Often environments are also categorized by the nature of 

the reward set .  Environments with binary reward sets, 

( )nℵ

( )nℵ =ℵ ( ) ( )n
i iF r F r=

R {0,1}R = , are called P-models, 

those with continuous reward sets on some interval, [ , ]R c d= , are called S-models, and 

environments where the reward set can take on a finite set of values, 1 2{ , ,... }qR r r r= , are 

Q-models.  The discrete trial operant conditioning (bird in a box) experiments discussed 

in later chapters all utilize discrete reward sets, and the focus will thus be on Q-models. 

 The interaction between the agent and the environment is depicted in Figure 1.2.  

The agent outputs an action that serves as an input to the environment.  Based on the 

action chosen the environment returns a reward from the appropriate distribution, this 

reward serves as input to the agent, and the process then repeats.  The environment 

represents the problem that the agent must ‘solve’.  A solution for this problem, or 

equivalently a model for the agent’s behavior, must specify a decision mechanism for 

generating the next action. 

 With this formalism, the bird in a box environment is described by an action set 

with  actions corresponding to pressing either the red or the yellow key; the reward 

set and reward distributions are controlled by the experimenter.  A trial begins when both 

keys light up, and ends after the bird presses a key to receive a reward.  All that remains 

is to describe the decision mechanism the bird is using. 

2k =

 

Aside:  From the bird’s perspective 

 Of course, for a real bird in a box, the preceding formulation is enormously 

simplified.  In order for this description to be useful, at the very least the bird must: 

1) Learn that pressing a colored key results in a reward. 
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Environment

( )r n ( )a n

( )nℵ

Agent
?

 
Figure 1.2  The flow of information in a general LA model.  The agent 
chooses an action on each trial.  In response the environment returns a 
reward selected stochastically from the appropriate distribution.  The 
decision mechanism that the agent uses to generate the next action must 
be specified by the modeler. 

2) Learn that the size of the reward received is associated with the color of the 

key and not, for example, with the location of the key in the box. 

3) Treat the simultaneous presentation of two stimuli as a choice between two 

possible actions. 

Presumably these associations were developed previously during training and can be 

ignored when trying to model behavior during the testing phase of the experiment.  

Nevertheless, the LA framework largely ignores stimuli and stimuli associations, but for 

living organisms these constitute essential elements in the problem.   

 The preceding formulation also neglects to characterize several additional aspects 

of the bird in a box experiment that might be expected to influence behavior.  For 

example, no mention is made of the energetic state of the bird, nor of the energetic 

content of the food rewards.  If energetic state impacts the decision mechanism that the 

bird actually uses, and there is evidence that it can (see chapter 4), then our model will 

necessarily be incomplete.  Similarly, the LA environment is formulated in terms of 

discrete trials, but the bird in a box experiment takes place in continuous time.  In 

transient natural environments, older information is less useful and may get discounted. 

Since the birds evolved in natural environments, one might expect that the amount of 



9 
 

 

time between trials could impact the bird’s decision mechanism.  The passage of time 

between trials can also impact energetic state by changing the rate of energy intake. 

 As with all models, modeling the bird in the box experiment as a multi-armed 

bandit problem abstracts substantially from the reality of the situation.  The LA 

framework formalizes the problem at a very high level, and the hope is that more 

fundamental processes, such as stimulus association, can be ignored and taken for 

granted.  Similarly, complexities that are unique to living organisms, such as energetic 

state and the effect of the passage of time, are ignored in the interest of simplicity and 

analytic tractability.  By exploring model behavior with this simple framework and 

comparing model predictions with experimental results, we can hopefully diagnose 

deficiencies of these simple models and then search for appropriate embellishments and 

refinements.  With these caveats in mind, let’s now return to the project of designing 

decision mechanisms for the agents in the model. 

Building agents 

The agent in a LA model is represented by a state, , and a learning rule T . 

The action chosen by the agent, , depends only on the current state .  After 

choosing an action and receiving a reward, the learning rule updates the agent’s state: 

( )nQ

( )a n ( )nQ

 ( )( 1) ( ), ( ), ( )n T n a n r n+ =Q Q . (1.2) 

The next choice is generated from a probability vector, 1 2( ) { ( ), ( ),..., ( )}kn P n P n P n=P , 

where  denotes the probability of choosing action  on trial .  The 

probability vector is normalized such that  

( ) Pr( ( ) )iP n a n a= = i ia n

 
1

( ) 1
k

i
i

P n
=

=∑  (1.3) 

on all trials n .  On each trial, the agent chooses an action stochastically with the 

probabilities given by the probability vector, and the probability vector is generally 

included as part of the description of the agent’s state.  Presumably the learning rule 

should increase the probability of taking an action after receiving a large reward from the 

action, but decrease the probability after receiving a relatively small reward. 
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 Learning rules can be either absorbing or ergodic.  An absorbing learning rule 

will eventually settle upon a single action and choose that action repeatedly forever, i.e. 

 for some action  and .   Conversely an ergodic 

learning rule will converge into an asymptotically stable distribution, 

lim ( ) 1in
P n

→∞
= ia ( ) 0 for all  jP n j i→

1 2{ , ,..., }rπ π π=π ,  

where ( )lim ( )i in
E P n π

→∞
=  and 0iπ >  for more than one i .  Note that the convergence of a 

given learning rule will depend on the environment in which it lives, and a given learning 

rule could be absorbing in one environment and ergodic in another. 

In transient environments the reward probabilities can change, and an action that 

was once bad (low expected reward) can suddenly become good (high expected reward).  

So ergodic learning rules where 0iπ >  for all  are preferable in transient environments.   i

Transience is the rule in natural environments, so ergodic learning rules might expected 

for living organisms.  Indeed Maynard Smith (1984), suggested that ergodicity would be 

an essential characteristic of evolved learning rules.  However, optimal learning rules for 

the k-armed bandit problem in a stationary environment are absorbing (Narendra and 

Thathachar, 1989).  It seems likely then that organisms would perform sub-optimally 

when confronted with a stationary k-armed bandit problem. 

Representing the agent’s decision mechanism in terms of a state, , a learning 

rule T , and a probability vector , there are still many possible types of decision 

mechanisms.  Here I would like to discuss three general approaches for implementing 

decision mechanisms. 

( )nQ

( )nP

Classical learning automata 

Classical learning automata (CLA), formulate the learning rule as a linear 

operation directly on the probability vector: 

 ( 1) ( ( ), ( ), ( ))n T n a n r n+ =P P . (1.4) 

For CLA, the agent’s state is identical to the probability vector, , and the 

learning rule must maintain the normalization of the probability vector as expressed in 

Equation 

( ) { ( )}n n=Q P

(1.3). 
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1

)

Within mathematical psychology these models are also known as linear models 

(Norman, 1972).  One of the simplest, and earliest, models of this sort is the linear reward 

penalty (LRP) model (Narendra and Thathachar, 1989).  Introduced by Bush and 

Mosteller (1955) as the alpha-model and also known as the fractional adjustment model 

(March, 1996), this model is most easily applied to environments with binary rewards (P-

model environments) and two actions.  Within such an environment, the learning rule can 

be implemented as a simple linear operation on the probabilities.  If  the 

learning rule is  

1( )a n a=

 1

2 2

( 1) (1 ) ( ) ( )
( 1) (1 )(1 ( )) (

P n m r n mP n
P n m r n mP n

+ = − +
+ = − − +

, (1.5) 

but if  the learning rule is 2( )a n a=

 1

2 2

( 1) (1 )(1 ( )) (
( 1) (1 ) ( ) ( )

P n m r n mP n
P n m r n mP n

1 )+ = − − +
+ = − +

. (1.6) 

Here  is a parameter, the memory coefficient, that controls the rate of learning; smaller 

values of  correspond to faster learning. 

m

m

 CLA models have been widely used in psychology as models for animal learning, 

and their mathematical properties have been studied thoroughly (e.g. Norman, 1972; Part 

II of Bush and Estes, 1959).  Models of this sort have proved somewhat effective in 

fitting experimental results from psychology, but they have also been criticized on 

theoretical and empirical grounds (e.g. Gallistel, 1990) and it has been difficult to fit data 

from diverse experiments while using a single memory coefficient (Killeen, 1985; Lea 

and Dow, 1985).  From an AI perspective, convergence to the ‘correct’ solution (i.e. 

exclusive choice of the action with the highest expected reward) is slow (Vasilakos and 

Papadimitriou 1995).  Although the probability of converging to an incorrect solution can 

be made arbitrarily small for CLA models operating in stationary environments, within 

AI other types of LA perform better and are proposed more frequently (Narendra and 

Thathachar, 1974). 
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Estimator learning automata 

Estimator learning automata (ELA) were introduced into the LA literature by 

Thathachar and Sastry (1985).  Their innovation was to introduce a vector of estimators, 

, where 1 2ˆ ˆ ˆ ˆ( ) { ( ), ( ),..., ( )}kn r n r n r n=r ˆ ( )ir n +∈\  represents the agent’s estimate of the 

expected value of action  based on its experiences up to trial .  The agent’s state is 

expanded to include these estimates, 

ia n

ˆ( ) { ( ), ( )}n n n=Q P r , and the learning rule for an 

ELA model is broken into two steps: 

 
( )1

2

ˆ ˆ( 1) ( ), ( ), ( )
ˆ( 1) ( ( ), ( 1))

n T n a n r n
n T n n
+ =

+ = +

r r
P P r

. (1.7) 

The ELA first updates the estimators  based on the outcome of the trial and then 

updates the probability vector based on the updated estimators.   

ˆ ( )ir t

An ELA model must specify how to derive the estimates, usually by using some 

type of averaging function.  For example, Vasilakos and Papadimitriou (1995) propose 

using a time window moving average (TWMA) to generate the estimators: 

  

 

The total reward received
from  over the last  times 
it was selected ˆ ( )

i

i

a W

r n
W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦=  (1.8) 

 
where W is a parameter that defines the length of the time window.  The next chapter 

introduces several other averaging functions. 

 In the LA literature, ELA models generally perform quite well, providing rapid 

convergence to ‘good’ choice probabilities (Vasilakos and Papadimitriou ,1995).  

However, with increased performance comes increased computational demands (both the 

probabilities and the estimates must be updated at each time step) and memory demands 

(both the vector of estimators and the vector of probabilities must be stored in memory). 
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1]

n

Driven estimator leaning automata 

 Define driven ELA (DELA) models as a subset of possible ELA models.  For a 

DELA model, the agent’s state consists solely of its estimators, i.e. , and 

the model dynamics are ‘driven’ by these estimators.  Rather than maintain and update a 

probability vector, the vector is computed at each time step with a choice function, 

, as 

ˆ( ) { ( )}n n=Q r

: [0,k k→\C

 ˆ( ) ( ( ))n =P rC . (1.9) 
 

This choice function must generate a normalized probability vector over the action set, 

A , as in Equation (1.3) above.  With this formalism, the dynamics of the learning process 

are determined through the evolution of the estimator vector and its interaction with the 

choice function. Since the probabilities are computed at each time step, the learning rule 

need only update the estimators:  

 ( )ˆ ˆ( 1) ( ), ( ), ( )n T n a n r n+ =r r . (1.10) 

Models of this sort are not frequently proposed in the AI literature, but they are quite 

common in psychology and animal behavior.  As defined above, DELA models are 

analogous to v-scale (Luce, 1959) and additive models (Norman, 1972) from 

mathematical psychology.  For example Luce’s (1959) simple beta-model can be 

represented as a DELA model with the learning rule 

 ( ) ˆ ( )    if  ( )
ˆ ( 1)

ˆ ( )           else
r n i i

i
i

r n a n a
r n

r n

β =⎧⎪+ = ⎨
⎪⎩

 (1.11) 

and choice function 

 ( )

1

ˆ ( )ˆ( ) ( )
ˆ ( )

i
i k

j
j

r nP n n
r n

=

= =

∑
rC . (1.12) 

Here ( )r nβ  is a parameter that depends on the value of the reward received. 

 DELA models appear frequently in the animal behavior literature.  Published 

models that are effectively DELA models include those considered by Lea and Dow 

(1984); the honeybee foraging models in Keaser et al. (2002),Dayan and Abbott (2001), 
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and Shapiro et al (2001); Herrnstein type matching models as in Herrnstein (1961) and 

March (1996).  Moreover, other models that are not always equivalent to DELA models 

can be treated as DELA models in certain experimental contexts (see Chapters 2 and 6 

for details).  

Discussion 

The differences between the model types are summarized in Table 1.1.  Note that 

CLA models are equivalent to DELA models where the choice function is the identity 

function and the estimator vector is the probability vector; thus CLA are a subset of 

possible DELA models.  DELA models require less memory than ELA models but can be 

more computationally taxing due to the introduction of the choice function which often 

involves a costly normalization operation.  ELA models and many CLA models often 

manage to avoid the normalization operation by beginning with a normalized probability 

vector and updating this vector using a learning rule that maintains normalization. This is 

only possible, however, due to an assumption fundamental to the LA framework:  the 

action set A  is the same on all trials.  

Natural choice problems are generally characterized by a changing set of feasible 

actions, ( )A t ⊆� A , that depend on the current state of the environment.  Many actions 

will only be useful given some set of sensory stimuli; for example the action ‘attack a 

prey item’ is only meaningful if there is a prey item accessible that can be attacked.  In 

such cases, the feasibility of certain actions can depend on the occurrence of events 

external to the agent, and the presence or absence of a given event can alter the 

composition of the feasible action set. 

In such an environment, ELA and CLA type models will also have to renormalize 

the probability vector whenever the composition of the feasible action set changes.  Thus 

in more natural environments, the computational advantage of updating the probabilities 

using a normalized learning rule largely disappears.  Indeed if probabilities are 

continuously being re-normalized, the value of maintaining and updating a probability 

vector can be questioned.  A dynamic feasible action set implies an estimator based 

model in a natural way (a similar argument was made by Luce, 1959). 
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Table 1.1  Different types of learning automata models.  Classical LA represent the agent’s state 
with the probability vector alone, and update this vector directly with the newest sample.  In 
addition to the probability vector, estimator LA introduce a vector of estimates, and update this 
vector with the results from the newest sample.  The updated estimator vector is then used to 
update the probability vector.  Finally, driven estimator LA maintain only the vector of estimates, 
and then compute the probability vector using a choice function.
 

 State Updating Rules Generate Choice 
Classical { ( )}nP  ( 1) ( ( ), ( ), ( ))n T n a n r n+ =P P  ( )nP  

Estimator ˆ{ ( ), ( )}n nP r  
( )1

2

ˆ ˆ( 1) ( ), ( ), ( )
ˆ( 1) ( ( ), ( 1))

n T n a n r n
n T n n
+ =

+ = +

r r
P P r

 ( )nP  

Driven 
Estimator 

ˆ{ ( )}nr  ( )ˆ ˆ( 1) ( ), ( ), ( )n T n a n r n+ =r r  ˆ( ) ( ( ))n n=P rC  

A DELA model seems more appropriate in these natural environments.  Since the 

probability of choosing any given action will depend on the composition of the set of 

available actions, it makes sense to track the values associated with the actions 

independently and then only compute probabilities when confronted with a particular 

action set.  The choice is modeled with a choice function that computes probabilities and 

then chooses an action based on these normalized probabilities.  Presumably a choice is 

in reality determined by some underlying dynamic process and is only normalized 

because one action eventually gets chosen.  Thus we should think of the choice function 

as a mathematical abstract that is attempting to encapsulate the dynamics of some more 

complex underlying process. 

The choice function abstraction simplifies the mathematical analysis of these 

models, and the following chapters explore the dynamics of DELA models in the context 

of some simple bird in a box type experiments.  The diversity of published DELA models 

(see above) is substantial.  The next chapter introduces a framework for analyzing 

different DELA models in terms of a utility function, estimators, and a choice function.  

This utility-estimator-choice structure will then be used throughout the rest of the thesis 

to guide the discussion and analysis of model behavior.
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Chapter 2  The utility-estimator-choice framework 

 
I claim that, in the face of the multi-armed bandit problem, every model for 

learning and decision making must specify at least three different pieces or elements.  

First, a utility function defines how the agent measures or values individual rewards.  

Second, the history of obtained rewards is used to compute an estimator of the expected 

reward from each action.  Finally, a choice function selects the next action based on the 

values of the estimators.  Of course the complexity of each element can vary widely 

between different models, and many models will augment this simple framework with 

additional elements.  Nonetheless, these three elements are essential for analyzing 

learning models in the context of the multi-armed bandit problem.  This chapter presents 

some definitions and mathematical characteristics for each element that will be useful for 

analyzing the behavior of DELA models. 

Utility functions and choice functions are fairly straightforward and they are 

discussed in more detail below.  However, there are many ways to compute estimators of 

the reward expected from an action; for example, in Equation (1.8) the estimators are 

updated recursively after each trial based on the rewards obtained.  More abstractly, 

estimators can be defined in terms of an averaging function that maps from the full 

sequence of actions chosen and rewards obtained to an estimate of the reward expected 

from each action.  We can think of the outcome of each trial as a sample composed of 

two values, ( ) { ( ), ( )}X n a n r n= , and after taking n samples the agent has access to a 

sampling history, .  The sampling history contains all the 

information available to the agent, and the averaging function computes estimators from 

this history.  Of course implementing a learning model in this way would be horribly 

inefficient, implying that the entire sampling history is maintained in memory.  I do not 

propose here that living organisms have such memories.  The averaging function is 

simply an abstract and useful construct for analyzing model behavior, and one that is 

hopefully intuitive to the statisticians in the audience.  In the following I will often speak 

of averaging functions and estimators interchangeably and thus will speak of the utility-

( ) { (1), (2),..., ( 1)}n X X X n= −H
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averaging-choice framework in addition to the utility-estimator-choice framework.  

Nonetheless, it will be important to keep in mind that there are more efficient ways of 

deriving estimators. 

In total, then, three functions are needed to implement a DELA model: a utility 

function, an averaging function, and a choice function.  The utility function defines how 

individual rewards are measured, the averaging function combines these individual 

rewards into estimators of the reward expected from each action, and the choice function 

selects the next action based on these estimators.  The flow of information in a DELA 

model is shown in Figure 2.1 for an environment with two possible actions.  The utility-

averaging-choice framework will be used throughout the rest of this thesis, and hopefully 

provides an intuitive way to think about decision mechanisms (indeed, while this thesis 

was in preparation, Yechiam and Busemeyer (2005) proposed an almost identical 

framework for analyzing learning models).  Each element of the framework will impact 

the resulting model behavior, and all the elements need to be examined together when 

analyzing model behavior. 

 

The utility function- measuring individual rewards 

It is important to differentiate between the physical rewards as measured by the 

experimenter, , and the subjective rewards as measured by the organism, .  The 

experimenter presumably measures the rewards using physical units that are related to the 

rate of energy intake provided.  These are the physical rewards.  The organism must 

measure the value of the physical rewards, but it may be using different units than the 

experimenter or attending to different aspects of the rewards.  These are the subjective 

rewards.  A model must specify a utility function, 

' ( )r n ( )r n

(.)U , which determines the 

relationship between the physical rewards and the subjective rewards: 

 ( )'( ) ( )r n r n= U . (2.1) 

The utility function determines how organisms measure individual rewards, and non-

linear utility function can generate interesting behavior.  The notion of a utility function 
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( )a n

' ( )r n

( )r n

( )1̂r n

(.)U

r(n-1)
.
.

r(3)
r(1)

r(n-2)
.
.

r(4)
r(2)

( )2̂r n

Classifier

(.)A (.)A

(.)C

2( )nΨ1( )nΨ

 
Figure 2.1  Flow of information in a DELA model.  The depicted environment has two actions.  The 
action chosen on trial n , , results in a physical reward from the environment, .  The 
utility function, 

( )a n ' ( )r n
(.)U , converts the physical reward into the subjective reward .  Based on the 

action selected, a classifier appends this newly measured reward to the appropriate memory 
vector, .  The averaging function, , then converts each memory vector into an estimator, .  

Finally, the choice function, , selects an action based on the estimators and the process repeats. 

( )r n

iΨ (.)A îr
(.)C

is familiar in economics where it is the basis of expected utility theory (Von Neumann 

and Morgenstern, 1947).  For a living organism, the utility function is expected to be an 

increasing function of the rate of energy intake provided by the physical reward, and will 

be assumed to be non-negative, i.e. : +→\U . 

In general, physical rewards can be described by multiple characteristics.  For 

example, the experiments discussed in the next chapter characterize rewards by both a 

waiting time (the delay to food delivery) and a reward size (number of food items 

provided).  When rewards have multiple characteristics each reward can be represented 

as a vector with the appropriate number of dimensions, but these multivariate physical 

rewards can greatly complicate model dynamics.  For simplicity the models discussed 
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hereafter will assume in such cases that the organism uses a univariate subjective reward, 

, and thus that the utility function converts a vector-valued reward into a single 

positive real value.  Some authors have suggested that organisms do not use absolute 

utilities, but instead use relative utilities that depend on the organism’s energetic state 

(Marsh et al 2004, Pompilio and Kacelnik 2005).  The following discussion is confined 

only to constant utilities such that 

( )r n +∈\

( )' ( )r nU  depends only on the reward provided and not 

on the trial number or the internal state of the agent. 

 

The averaging function- combining multiple rewards 

 The utility function specifies how the organism measures individual reward 

values, but the averaging function combines these samples into estimators of the reward 

expected from each action.  The averaging function converts the sampling history into a 

vector of estimators, 

 ˆ( ) ( ( ))n n=r HA , (2.2) 

where  is the averaging function.  Intuitively, the expected rewards 

from an action should only depend on the samples obtained from that action.  That is, if 

 denotes the subset of the sampling history obtained from action , we 

might expect that , and thus that the associated estimator, , does not 

depend on the samples obtained from other actions.  Averaging functions of this sort will 

be called separable averaging functions (Yechiam and Busemeyer, 2005 refer to these as 

interference models).  Separable averaging functions have simpler dynamics than non-

separable averaging functions, and the following chapters only consider DELA models 

with separable averaging functions.  Many published learning models are not separable in 

this sense; for example most CLA models, such as the linear reward penalty model of 

Bush and Mosteller (1958), are not separable.  Thus separability is an important 

characteristic distinguishing CLA from DELA models as discussed hereafter. 

: ( )nR A +× →\A k

n

i

( ) ( )i n ⊂H H ia

ˆ ( ) ( ( ))ir n n= HA ˆ ( )ir n



20 
 

 

i

 Averaging functions can also be distinguished by the length of the memory 

implied.  Define a finite memory averaging function as one that, given enough samples 

from the environment, only depends on a subset of the full sampling history.  That is, a 

separable averaging function has finite memory if it can be expressed as 

 ˆ ( ) ( ( ))ir n n= ΨA  (2.3) 

for some , given that is greater than some critical .  I will refer to 

as the memory vector for action .  If each memory vector has the same 

maximum length, W ,  call it a length-W memory.  In other words, with a separable 

length-W memory averaging function, the estimator  depends only on the last 

rewards obtained from action . 

( ) ( )i in ⊂Ψ H n n *n

( )i nΨ ia

ˆ ( )ir n

W ia

 Different types of averaging functions make sense in different types of 

environments.  In stationary environments where the reward distributions do not change, 

non-finite memories make sense because each sample contributes information about the 

current reward distribution.  However, in transient environments, older samples provide 

less information about current reward distributions, and the organism must be able to 

adapt to changes in the distributions.  Finite memory averaging functions are better suited 

for these transient environments.   

 While laboratory experiments often present organisms with stationary 

environments, natural environments are likely to be transient.  Thus natural decision 

mechanisms are probably adapted for transient environments, and we might expect 

organisms to have finite memory averaging functions, or at least averaging functions that 

weight more recent samples more highly.  The following four averaging functions will be 

mentioned frequently in following chapters.  All are separable, but the memory lengths 

vary. 

Example:  Long term average (LTA): 

The long term average,  

 sum of all rewards from action ˆ ( )
total # of times action  was chosen

i
i

i

ar n
a

= , (2.4) 
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does not have finite memory.  Many published models assume a LTA function by default. 

Example:  Time window moving average (TWMA): 

 A TWMA, with memory length W , 

 

sum of the last  rewards 
obtained from action ˆ ( ) i

i

W
ar n

W
= , (2.5) 

is a length-W memory averaging function.  This type of averaging function has been used 

in the learning automata literature (Vasilakos and Papadimitriou 1995). 

Example:  Exponentially weighted moving average (EWMA): 

 A EWMA averaging function is defined by recursively updating the previous 

value of the estimator: 

 
ˆ(1 ) ( ) ( ) if ( )

ˆ ( 1)
ˆ (n)                             else

i
i

i

m r n mr n a n a
r n

r
i− + =⎧

+ = ⎨
⎩

. (2.6) 

Here  is a parameter, the memory coefficient, that controls the rate at which the 

estimate changes; with smaller values of  estimates change more quickly and newer 

samples are weighted more strongly.  Thus smaller values of  correspond to shorter 

memory lengths. 

m

m

m

EWMA based models are extremely common as models for learning.  Within 

reinforcement learning, these models are also known as exponential recency-weighted 

averages (Sutton and Barto, 1998).  Note that Equation (2.6) above is quite similar to the 

linear reward penalty updating rule from the previous chapter (Equation(1.5) ), the 

difference being that the LRP rule updates the probabilities directly, whereas here the 

estimators are updated.  Similarly, the Rescorla-Wagner learning rule uses a EWMA 

updating rule, but is thought of as updating the association strength between an action 

and a stimulus (see Couvillon and Bitterman, 1991).  EWMA models are pervasive in 

psychology, so much so that Lea and Dow (1984) invoke the EWMA updating procedure 

as the distinguishing characteristic of the “common model” for animal learning. 



22 
 

 

Although EWMA averaging functions are not actually finite, in certain contexts 

they can be approximated to arbitrary precision by length-W memory averaging 

functions.  For example, assume that there exists some largest reward, , then the 

EWMA averaging function can be approximated by a length-W  averaging function with   

maxr < ∞

 max

log

log( )
r

W
m

ε⎛ ⎞
⎜ ⎟
⎝= ⎠  (2.7) 

whereε denotes the desired degree of accuracy and can be made as small as necessary.  

So in many contexts EWMA functions can be treated as if they have finite memory (see 

Chapter 6 for a more formal discussion).   

Example:  Generalized linear combination (GLC) 

 Let be weights with [0,1] ( 1,2,... )jm j∈ = W
1

1
W

j
j

m
=

=∑ , and let ,i jψ  be the  

value in the memory vector 

thj

,1 ,2 ,{ , ,..., }i i i i Wψ ψ ψ=Ψ .  Then the GLC averaging function is 

given by 

 ,
1

ˆ ( )
W

i
j

r n mj i jψ
=

=∑ . (2.8) 

The weights define the GLC, and each of the previous finite memory averaging functions 

is a special case of the GLC averaging function.  For example, the TWMA uses 1
jm

W
= . 

 

The choice function- making a decision 

 The choice function defines how the next action is selected based on the current 

value of the estimators.  Recall that the choice is modeled with a probability vector, 

, where 1 2( ) { ( ), ( ),... ( )}kn P n P n P n=P ( ) Pr( ( ) ) [0,1]i iP n a n a= = ∈  represents the 

probability of choosing action  on the trial.  The probability vector must be 

normalized, and is generated by the choice function, , as  

ia thn

: [0,k k
+ →\C 1]
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n ˆ( ) ( ( ))n =P rC . (2.9) 

The choice function determines the magnitude of preferences developed in stationary 

environments.  Strong preferences will develop from choice functions that produce a high 

probability of choosing the action with the currently largest estimate.   

For example, the greedy choice function (Sutton and Barto, 1998) always chooses 

the action with the currently largest estimate and is a step function: 

 
( )

1,...,
ˆ ˆ1   if  max

ˆ( ) ( ( ))
0  else

i j k
i

r r
P n n =

⎧ =⎪= = ⎨
⎪⎩

rC j . (2.10) 

At the other extreme is the indifferent choice function that attributes equal weight to each 

action, 1( )i kP n = , independent of the value of the estimators.  More reasonable choice 

functions will lead to intermediate levels of preference.  I will often refer to the 

choosiness of a choice function:  more choosy (choosier) choice functions lead to 

stronger preferences.  The greedy choice function is the choosiest, and the indifferent 

choice function is the least choosy.  

As with the averaging functions, different environments call for different choice 

functions.  In stationary environments, the optimal behavior is to pick the action with the 

largest expected reward and choose it exclusively, suggesting some version of the greedy 

choice function.  In transient environments, however, reward distributions can change 

such that a formerly poor distribution begins to provide the largest expected reward.  In 

order to detect and exploit improvements in the reward distributions, choice functions in 

transient environments should always maintain at least a small probability of choosing 

each action, even actions with currently low expected rewards.  One might expect that 

choice functions that evolved in transient environments would be less choosy than those 

from stationary environments. 

The following chapters are mainly concerned with problems that present 2k =  

possible actions.  When there are only two possible actions, the probability vector can be 

summarized by a single value, 1( ) ( )n P nφ = , and the choice function expressed as 

 ( )1 2ˆ ˆ( ) ( ), ( )n r n r nφ = C . (2.11) 
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Note that 2 ( ) 1 ( )P n nφ= − , and here, .  In the following chapters, I will say 

that a choice function is proper if it meets the following four conditions: 

2: [0+ →\C ,1]

• C.0:  0 ( , ) 1  for all ,x y x y +≤ ≤ ∈\C  

• C.1:  1
2( , ) if  x y x= =C y  

• C.2:  ( , ) 1 ( , )x y y= −C C x

2

 

• C.3:  1 2 1( , ) ( , )  if  x y x y x≥ >C C x 2, and 1 2 1( , ) ( , )  if  yx y x y y≤ >C C  . 

Condition C.3 says that  is a monotonically increasing function in its first argument; if 

the inequality is strict then C is strictly increasing on 

C

x .  These conditions follow mainly 

from characteristics of probabilities and hopefully correspond to the intuitive notion of a 

choice function. 

It will be helpful to define an additional characteristic of choice functions in 

analogue to the traditional notion of convexity.  Recall that a function, ( )f x , is convex 

on an interval [ ,  if and only if for every ]j k 1 2, [ , ]x x j k∈   

 1 2 1( ) ( )
2 2

2f x f x x xf+ ⎛≥ ⎜
⎝ ⎠

+ ⎞
⎟ . (2.12) 

Analogously, I will say that a choice function, ( , )x yC , is reflectively convex (R-convex) 

on an interval [ ,  if, for every ]j k 1 2, [ , ]x x j k∈  and 1 2
2

x xx += , 

 1 2 1 2( , ) ( , ) ,
2 2

x x x x x x x+ +⎛≥ ⎜
⎝ ⎠

C C
C ⎞

⎟ , (2.13) 

or equivalently, using condition C.1, 

 1 2( , ) ( , ) 1
2 2

x x x x+
≥

C C . (2.14) 

Similarly, say that a choice function is reflectively concave (R-concave) if 

 1 2( , ) ( , ) 1
2 2

x x x x+
≤

C C . (2.15) 

In the special case when equality holds on the interval (i.e. both R-concave and R-

convex) say that the function is reflectively affine (R-affine). 
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 The R-convexity of a function will have important ramifications in future 

chapters.  All of the functions we will be considering are R-concave.  By rearranging 

Equation (2.15), we see that an R-concave function has the special property where 

 1( , ) 1 ( , )2x x x x≤ −C C , (2.16) 

or, using condition C.2,  

 1( , ) ( , )2x x x x≤C C . (2.17) 

For a strictly R-concave function, 

 1( , ) ( , )2x x x x<C C , (2.18) 

and for an R-affine function 

 1( , ) ( , )2x x x x=C C . (2.19) 

These properties will be used to derive the results in Chapters 3 and 5. 

Difference-based vs. ratio-based 

 There is some debate in psychology about whether organisms choose between 

options by computing ratios or differences.  I will say that a choice function is ratio-

based, or odds-based, if there exists some function  such that  * : (0+ →\C ,1)

 ( )*( , )x y =C C z  (2.20) 

for xz
y

= .  Similarly I will say that a choice function is difference-based if there exists 

some function  such that  ** : (0,→\C 1)

 ( )**( , )x y =C C z  (2.21) 

for z x y= − .  Ratio-based choice functions are consistent with some fundamental 

psychological results such as Weber’s law, and are proposed more frequently (Fantino 

and Goldshmidt, 2000). There is still an ongoing debate, however, and some 

experimental results are better explained by difference-based choice functions (Fantino 

and Goldshmidt, 2000; Savastano and Fantino, 1996), while other results match the 

predictions of ratio-based choice functions (Gibbon and Fairhurst, 1994; Mazur, 2002).   
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Analogs of Conditions C.1-C.3 can be formulated for both types of choice 

functions (Condition C.0 is trivial).  For a ratio-based choice function, the three 

conditions become 

• C.1*: * 1
2(1) =C  

• C.2*: * * 1( ) 1z
z

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

C C  

• C.3*: * *
1 2 1( ) ( )  if  2z z z≥ >C C z . 

Importantly, all strictly increasing ratio-based choice functions are also strictly R-

concave.  To see this, note that  

 x i x
x x i
−

<
+

 (2.22) 

for all 0  and .  Thus if  is strictly increasing,  i x< ≤ x +∈\ *C

 * *( , ) ( ,x i x )x i x x x i
x x i
−⎛ ⎞ ⎛ ⎞− = < = +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

C C C C . (2.23) 

Since 2
x i x i x− + + = , this is equivalent to strict R-concavity by Equation (2.17).   

For a difference-based choice function, the three analogous conditions are 

• C.1**: ** 1
2(0) =C  

• C.2**: ( )** **( ) 1z z= − −C C  

• C.3**: ** **
1 2 1( ) ( )  if  2z z z≥ >C C z . 

Difference-based choice functions are all R-affine since  

 ( ) ( ) ( ) ( )** ** **, ( ) ( ) ( , )x i x x i x i x x i x x i− = − − = − = − + = +C C C C C . (2.24) 

Example:  Matching choice function 

 Perhaps the most straightforward choice function, the matching choice function is  

 ( , ) xx y
x y

=
+

C . (2.25) 

This choice function is strongly associated with the matching law (Herrnstein, 1961), and 

is often assumed by default (e.g. Keaser et al, 2002).  Clearly the matching choice 
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function is proper (i.e. it meets conditions C.0-C.3); the matching choice function is also 

ratio-based, with  

 *
1

1( )
1

z
z−

=
+

C  (2.26) 

for x
yz = . 

Example:  Boltzmann choice function 

 Often used in reinforcement learning, the Boltzmann choice function (Sutton and 

Barto, 1998) has its origins in statistical mechanics: 

 ( , )

x

x y
ex y

e e

γ

γ γ

=

+

C . (2.27) 

The parameterγ  controls the magnitude of the preferences that develop, and is analogous 

to the temperature of a physical system.  Asγ →∞ , each action will be equally likely to 

be chosen, while as 0γ → , the action with the largest estimate will be chosen with 

probability approaching one.  Smaller values of γ  lead to choosier choice functions 

(Figure 2.2). 

 The Boltzmann choice function is proper and is difference-based:  

 ** 1( , )
1

zx y
eγ

=

+

C  (2.28) 

for z y x= − . 

Example:  Modified Boltzmann choice function 

 Equation (2.27) can be modified as 

 

1

1 1( , )

x
x y

x y
x y x

ex y
e e

γ

γ γ

+

y+ +

=

+

C  (2.29) 

This modification makes the parameter γ  scale independent, and smaller γ  values lead 

to choosier choice functions (Figure 2.2).  The modified Boltzmann is proper, but, unlike 

the traditional Boltzmann function, it is ratio-based: 
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Figure 2.2.  Graphs of the Boltzmann and modified Boltzmann choice functions.  Shows the 
probability of choosing action x  as a function of its estimate and for 5y = .  For comparison, the 
matching choice function is also depicted in green.  Note that smaller values of γ  are associated 
with steeper (choosier) choice functions.

 *
( ) 1

1 1( ) ( )
1 1

1
g zz g z

z z
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for x
yz = . 

 

Example:  Gaussian choice function 
 Not all decision mechanisms can be conveniently expressed in terms of a 

probability vector.  The Gaussian choice function generates k  normally distributed 

random variables, , each time a choice must be made.  The mean of each 

distribution is given by the current value of the associated estimator, and the parameter 

2 2ˆ ˆ~ ( ,i iY N r rγ )i

γ  

determines the coefficient of variation of these distributions.  On each choice trial, the 

agent chooses the action associated with the largest .  When there are only two options, 

the Gaussian choice function simplifies to 

iY

 
2 2

( , ) x yx y
x yγ

⎛ ⎞−⎜= Φ
⎜ +⎝ ⎠

C ⎟
⎟

. (2.31) 
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Figure 2.3  The Gaussian choice function.  All symbols as in Figure 
2.2.  Choosiness increases as γ  decreases. 

where  represents the cumulative distribution function for a standard Gaussian 

random variable.  As with the other choice functions, smaller values of 

(.)Φ

γ  are associated 

with stronger preferences and increased choosiness (Figure 2.3), and 0γ =  gives the 

greedy choice function.  Gaussian choice functions have been proposed in connection 

with considerations of Weber’s law (Bateson and Kacelnik, 1995).  This choice function 

is ratio-based, with the equivalent representation 

 *

2 2

1 1 1( )
1 1

z
z zγ −

⎛ ⎞⎛ ⎞
= Φ −⎜ ⎜⎜ + +⎝ ⎠⎝ ⎠

C ⎟⎟⎟  (2.32) 

for x
yz = . 

 

Discussion 

Figure 2.1 shows the flow of information in a DELA model confronted by an 

environment with two actions.  Individual samples are measured using the utility function 

and the averaging function converts these samples into estimates of the expected value 

for each action.  The agent’s state is represented by the vector of estimates , but if the 

averaging function is separable and has length-W, the agent’s state can equivalently be 

represented by the memory vectors , with 

ˆ( )nr

( )i nΨ ˆ ( ) ( ( ))ir n ni= ΨA .  Note that the 
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classifier unit is needed to assign each measurement to the appropriate memory set, 

effectively performing the job of stimulus association. 

 The next chapter applies the framework to a simple bird in the box experiment 

conducted by Bateson and Kacelnik (1995).  The experimental design allows for an 

analytic derivation of predictions for several simple models.  Interestingly, the 

experimental results are numerically inconsistent with the predictions of many simple 

decision models, including the model proposed by the authors.  
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Chapter 3 A simple experiment 

 
When organisms choose between foraging options providing qualitatively 

different types of rewards, for example apples and oranges, it is not immediately clear 

how they should or do value these different reward types.  Much experimental work 

within psychology and economics has explored how different types of rewards are 

valued.  One way to explore how organisms attribute value is to offer a repeated choice 

between two rewards and then slowly modify one of the rewards until the organism is 

indifferent between the two choices.  For example, we could start by providing a choice 

between a single apple and five oranges and then slowly increase the number of apples 

provided until we reach an indifference point:  the point at which both options are chosen 

with equal probability.   

Within psychology, this experimental approach is known as the titration 

procedure and it has been used in a variety of experimental contexts, but most frequently 

it is used to evaluate how utility functions respond to different reward characteristics 

(Lea, 1976; Mazur 1984, 1986a, 2000, 2005; Cardinal et. al. 2002).  The titration 

procedure presents a choice between a standard option, for which the reward schedule is 

held constant, and an adjusting option for which the reward schedule is slowly adjusted 

over the course of the experiment based on the subject’s choices.  For example, one of the 

experiments conducted by Mazur (1984) presented pigeons with a choice between a 

standard option delivering a small amount of food after a 10 second delay and an 

adjusting option delivering a large amount of food after an adjusting delay.  The goal of 

the experimenter was to determine the delay that would cause the birds to be indifferent 

between the two options. 

 Although such experiments usually use disparate reward types, effectively 

comparing apples and oranges, several experiments have also used the procedure when 

the rewards are otherwise identical, thus comparing apples with apples (Lea, 1976; Mazur 

1984, 1986a, 1986b; Mazur et al. 1985; Bateson and Kacelnik, 1995).  For example, in 

one of the experiment conducted by Bateson and Kacelnik (1995) the constant option 
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always provided three food pellets while the adjusting option provided an adjusting 

number of food pellets.  Presumably the indifference point should be obtained when the 

adjusting option provides three food pellets, but surprisingly the indifference point was 

obtained with a reward size of more than three pellets.  Indeed most of the titration 

experiments offering equivalent reward types displayed a titration bias:  the value of the 

adjusting option at the indifference point was significantly larger than the corresponding 

value of the standard (Mazur 1986a and Lea 1976 are exceptions).  The titration bias is 

puzzling and currently remains unexplained. 

 In this chapter I explore the Bateson and Kacelnik (1995) experiments in detail 

and show how the observed titration bias will emerge if the organisms are using a ratio-

based choice function.  This fact potentially has substantial ramifications for the 

interpretation of titration results.  I also show that the model proposed by Bateson and 

Kacelnik (BK) is numerically inconsistent with the results of their experiment.  

Specifically, their model cannot fit the results from the first stage of the experiment, 

wherein reward distributions were held stationary, and simultaneously fit the results from 

the second stage of the experiment wherein the reward distributions were transient.  One 

explanation for this inconsistency, that the starlings respond differently in stationary and 

transient environments, is discussed briefly; this hypothesis is discussed further in 

Chapter 7. 

 

Experimental procedure 

 The experiment utilized a discrete trials procedure and presented each bird with a 

choice between two colored keys representing different feeding options.  Trials were 

organized into block of ten, and there were two types of trials:  forced trials and choice 

trials.  Forced trials forced the bird to experience each of the options, while choice trials 

asked it to choose between them (i.e. express their preferences).  On forced trials, only 

one of the keys was illuminated, and if the bird pressed the key while it was illuminated, 

a reward was provided.  On choice trials both keys were illuminated simultaneously, but 

only the first key pressed delivered a reward.  Each block consisted of 8 forced trials 
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followed by 2 choice trials.  The key color in the forced trials was chosen quasi-randomly 

so that each key was illuminated on four of the forced trials in each block but the order of 

presentation was random; this procedure ensured that the birds received equal exposure to 

each option during the forced trials.  All trials were separated by an inter-trial interval, 

and the length of this interval was varied between birds, acting as an additional treatment, 

ranging from 9.3 seconds to 132 seconds.  

There were two stages to the experiment.  In the first stage, one of the key colors 

delivered a reward of 3 food pellets, while the other delivered a reward of 9 food pellets.  

The environment was held stationary during the first stage of the experiment and reward 

sizes remained unchanged throughout.  Eventually all of the birds chose the better key, 

i.e. the key delivering 9 pellets, more frequently.  A bird completed stage one when it 

selected the better key in 70% or more of the choice trials on each of two consecutive 

days.  There were 12 blocks, or 24 choice trials, per day, so stage one ended for a bird 

when it chose the better key 17 or more times each day for two consecutive days.   

There were two main treatments in the second stage of the experiment.  For half 

the birds, the standard key always provided a 9 pellet reward and for the other half it 

always provided a 3 pellet reward.  Under both treatments the adjusting reward changed 

between blocks according to a titration rule, and thus the environment was not stationary.  

If a bird chose the adjusting key on both of the choice trials in a block, the adjusting 

reward was decreased by one, whereas if the bird selected the standard key twice, the 

adjusting reward was increased by one.  If the bird chose each key once, the adjusting 

reward remained unchanged.  Negative reward values were not allowed and rounded up 

to zero.  The titration procedure was designed to eventually oscillate around a single 

value, presumably the value of the standard.  Different birds experienced different 

numbers of blocks during stage two (not all birds completed 12 blocks per day), but all 

the birds except one completed at least 270 blocks over the course of stage 2.  The data 

from this lone laggard bird were discarded, so the results for stage two include data from 

eleven birds in all. 
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Table 3.1  Results from stage 2 of the experiment.  The Bias is the difference between the 
mean of the adjusting option and the value of the standard reward.  The percent bias is the 
bias divided by the size of the standard reward.  Note that the mean of the adjusting option 
is larger than the value of the standard (positive bias) and that the percent bias is similar in 
both treatments.  Note also that the CV is slightly higher in the 3 pellet treatment than in 
the 9 pellet treatment. 
 

Tr a
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 eatment St
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ndard 
ward 

djusting Bias Percent 
Bias 

Adjusting
CVean 

Sm 3 pellets 3.97  all 0.97 32% .583
La 9 pellets 12.10  rge 3.10 34% .494

Experimental results 

 All twelve birds completed the first stage of the experiment.  The birds took 4.25 

days ( ) on average to complete the first stage.  The number of days required 

to meet the stopping criterion (two consecutive days with 70% or more choices of the 

larger key) was the only data reported from stage one. 

3.25SD = ±

BK report a variety of results from stage two, but the main results for our 

purposes are presented in Table 3.1 and Figure 3.1.  Table 3.1 shows the mean and 

coefficient of variation (CV) of the adjusting option during stage two of the experiment.  

Note that both treatments show a titration bias:  the mean value of the adjusting option is 

approximately 33% larger than the value of the standard.  The CV was similar between 

treatments, but was slightly larger for the 3 pellet treatment than it was in the 9 pellet 

treatment. 

 Figure 3.1, taken directly from BK (1995), shows the probability of making 

correct choices on both of the choice trials in a block; I will refer to this probability as the 

potential.  A choice is correct if the key with the currently larger reward value is chosen; 

when the value of the adjusting key is less than the value of the standard key, it is correct 

to choose the standard key, but it is correct to choose the adjusting key when its 

associated value is larger than the standard.  The top row of Figure 1 shows the values 

predicted by BK’s model (discussed below) in both experimental treatments, and the 

bottom two graphs show the empirical results averaged across all of the birds in the 

experiment.  Note that both sets of graphs are somewhat asymmetric and the potential 

increases more quickly to the left of the standard (i.e. where the adjusting option is less 
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Figure 3.1  The potential, i.e. the probability of making 2 correct choices, as a function of the 
current value of the adjusting option.  The top row depicts the predictions from Bateson and 
Kacelnik’s model for several values of the parameterγ .  The bottom row shows the empirical 
results averaged across all 8 birds.  The left column shows the 3 pellet treatment, and the right 
shows the 9 pellet treatment.  (Reprinted from Bateson and Kacelnik 1995 with permission from 
Elsevier) 

than the standard).  For the empirical data, this asymmetry is most visible in the 9 pellet 

treatment. 

 

Modeling the experiment 

 The action set has  actions, and in the second stage , where  

corresponds to pressing the standard key and 

2k = { , }S JA a a= Sa

Ja corresponds to pressing the adjusting 

key.  The reward values are characterized by the number of food pellets provided, which 

must be non-negative, so 'R += ] .  The standard option always provides the same 

reward, , with  depending on the treatment.  Both reward distributions are 

stationary during stage one, but during stage two the reward provided by the adjusting 

'
Sr

' 3 or 9Sr =
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option can change between blocks .  The reward provided in any given block, , 

is a random variable whose distribution is determined by the agent’s responses on the 

choice trials. 

N ' ( )Jr N

 Given this simple environment, many decision mechanisms are reasonable:  there 

are many possible combinations of utility functions, averaging functions, and choice 

functions.  For simplicity, assume here that the utility function is the identity function and 

thus that agent’s subjective rewards are identical to the physical rewards, 

.  The utility function can then be ignored, and model behavior is 

dictated by the averaging function, the choice function, and the environment.  Given 

certain simple averaging functions, model predictions can be derived in closed form. 

'( ) ( )r n r n += ∈]

 If the agent’s estimates of current reward value depend only on the samples 

obtained in the current block, model dynamics are much easier to analyze.  Due to the 

forced trials, the experimental structure ensures that the bird will always be exposed to at 

least four samples from each option in each block.  If an averaging function has a 

memory length of four (the agent remembers the last 4 rewards obtained from each 

action) or less, the value of the estimators during the choice trials will only depend on the 

samples obtained during the current block.  As a result, the agent’s estimate during the 

choice trials depends only on the value of the adjusting key in the current block and not 

on the sequence of previous values.  While slightly unrealistic, this assumption will allow 

us to derive analytic predictions, and BK also make this assumption in order to analyze 

their model.   

A time window moving average (TWMA) with a memory length  satisfies 

this assumption.  Since the TWMA is unbiased, on the choice trials the estimators will be 

identically equal to the current value of the titrating option:  So for a TWMA with 

4W ≤

4W ≤  

 ˆ ˆ( ) ( ) ( )S S J Jr n r and r n r N= = . (2.33) 

As a result of Equation (2.33), model behavior is determined only by the current reward 

values, and .   Sr ( )Jr N
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Deriving predictions for stage one 

In stage one, the bird has a choice between two actions, 1 2{ , }A a a= , where action 

 corresponds to choosing the better key providing 9 food pellets per trial and action  

corresponds to choosing the key providing 3 food pellets.  To complete stage one, each 

bird must choose the better key on more than 70% of the trials (at least 17 times in 24 

trials) on each of two consecutive days.  Define daily success as choosing the better key 

at least 17 times in a day.  The number of days needed to complete the experiment, 

1a 2a

D , is 

then equivalent to the number of days needed before obtaining two consecutive daily 

successes.  Let θ  be the probability of daily success on any given day.  Then D  is 

distributed as a generalized geometric random variable with order 2 and success 

probability θ . 

A geometric random variable represents the number of trials needed to obtain a 

single success from a sequence of independent Bernoulli random variables.  Analogously, 

a generalized geometric random variable of order  represents the number of trials 

needed to obtain  consecutive successes from a sequence of independent Bernoulli 

random variables.  The expectation and variance for the generalized geometric 

distribution was derived by Philippou et al (1983): 

j

j

 (1 )( )
(1 )

j

jD E D θ
θ θ
−

= =
−

, (2.34) 

and 

 
2 1

2
2 2

1 (2 1)(1 )( ) ( )
(1 )

j j

j

jD Var D θ θ θσ
θ θ

+− + − −
= =

−
 (2.35) 

where  is the order of the distribution and j θ  is the success probability. 

 From the previous chapter, the choice function can be written as  

 ( )1 2ˆ ˆ( ) ( ), ( )n r n r nφ = C  (2.36) 

where ( )nφ  represent the probability of making the correct choice, choosing the larger 

key, on each trial.  With the assumed averaging function, 1̂( ) 9r n =  and  on all of 

the choice trials in stage one.  So 

2̂ ( ) 3r n =

( )1 2ˆ ˆ( ) ( ), ( )n r n rφ φ= = C n  is constant across the entire 
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first stage, and the number of correct choices each day, Z , is binomially distributed:  the 

number of successes (choices of the larger key) in 24 trials.  The probability of a daily 

success (17 or more correct choice) is then given by: 

 
24

24

17

24
Pr( 17) (1 )z

z

Z
z

θ zφ φ −

=

⎛ ⎞
= ≥ = −⎜ ⎟

⎝ ⎠
∑ . (2.37) 

By substituting Equation (2.37) into Equation (2.34), we can use compute D   and 

 with the appropriate choice function. 2 ( )Dσ

Graphing D  and  as a function of2 ( )Dσ φ  (Figure 3.2), shows that values of φ  

in the neighborhood of 0.7 appear to match both of the empirical results well.  The 

matching choice function gives 9
9 3 0.75φ += = , slightly larger than expected value of  0.7 

depicted on these plots. 

Deriving predictions for stage two 

Equation (2.33) allows stage 2 of the experiment to be analyzed as a Markov 

process.  The states of the system is represented by the value of the adjusting key, , 

in the current block , and the state transition probabilities depend only on the current 

state.  Using Equation 

( )Jr N

N

(2.33) and the definition of the choice function in Equation (2.36), 

the probability of choosing the adjusting option can be written in terms of the current 

value of the adjusting key on block as  N

 ( ) ( ) ( ( ), )J JN P N r N rSφ = = C . (2.38) 

Let , { 0,1,2,...}i iφ = , be the probability of choosing the adjusting option given that the 

value of the adjusting option on the current block equals i , i.e. 

 ( , ) Pr( ( ) | ( ) )i S J Ji r a n a r N iφ = = =C = . (2.39) 

The adjusting reward only changes when the bird chooses the same option on both of the 

choice trials in a block. When the adjusting reward is equal to , the probability of 

choosing the adjusting option on both choice trials in a block is

i
2
iφ .  Due to normalization, 

( ) 1 ( ) 1S JP n P n iφ= − = − , and the probability of choosing the standard option on both 

choice trials in a single block is 2(1 )iφ− . 
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Figure 3.2-  Predicted number of days needed to complete stage 1 graphed as a function 
of φ , the probability of choosing the larger option on each choice trial.  The top graph 
shows the mean and the bottom the standard deviation.  In both graphs the horizontal 
dashed line shows the empirical value.  The vertical dotted line shows the choice 
probability predicted by the matching choice function, i.e. 9

3 9+ . 

So {  is a discrete time Markov birth-death process with countable 

states, , and one step transition probabilities, 

( ), }Jr N N ∈]

{0,1,2,...}i∈

Pr( ( ) | ( 1) )ij J Jp r N j r N i= = − = ,  given by 
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for , and 0i >

 . (2.41) 
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1 (1 )      if 0   
0                     else
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φ
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⎧ − =
⎪
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⎪
⎩

j

Markov birth-death processes arise frequently in a variety of disciplines and have been 

studied extensively (for a review see Zikun and Xiangqun, 1980). 
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Using Equation (2.40) and the flow equations for the Markov process, the 

asymptotic mean and variance of the adjusting reward can be derived (Gallager, 1996; 

Howard, 1971).  The mean is 

 0

0

( )
i

i
J J

i
i

i
r E r

α

α

∞

=
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=

= =
∑

∑
, (2.42) 

and the variance is 
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where  
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Note that the sum in (2.42) will only converge if  

 
0

i
i

α
∞

=

< ∞∑ , (2.45) 

otherwise the value of the adjusting option will wander off to infinity and the titrating 

procedure will not stabilize.  A sufficient condition for (2.45) to hold is 2(1 )i i
2φ φ− < , or 

equivalently 1
2iφ > , for all sufficiently large (Gallager, 1996).  Models that don’t 

converge predict an infinite expected value for the titrating reward, 

i

Jr = ∞ , but all strictly 

increasing choice functions will necessarily converge.  In the actual experiments, the 

titrations stabilized for all but one bird. 

 Using these mathematical results, we can now compute predictions for different 

models in both stages of the experiment. 

Testing choice functions 

 BK propose a model based on scalar expectancy theory (Gibbon et al, 1984) 

which assumes that agents recall values from memory with some error, and that the 
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variance in the recalled value is proportional to the real value in memory.  Individual 

samples are represented by normal distributions with constant coefficients of variation.  

When confronted with a choice, the agent takes a sample at random from the distributions 

associated with each action and chooses the action with the largest sample. This model is 

not formulated in terms of an averaging function and a choice function per se.  

Nonetheless the model BK test is mathematically equivalent, in this experiment, to a 

DELA model using a TWMA with 4W =  and the Gaussian choice function:  

 ( )
2 2

( ) ( )( ) ( ), ( )
( ) ( )

J S
J s

S J

r n r nn r n r n
r n r n

φ
γ

⎛ ⎞−⎜= = Φ
⎜ +⎝ ⎠

C ⎟
⎟

. (2.46) 

Here is the cumulative distribution function of a standard Gaussian random variable,  Φ

γ  is a model parameter, and as 0γ →  this choice function becomes choosier, leading to 

more extreme preferences. 

Figure 3.3 presents the predictions of BK’s model on both stages of the 

experiment; Figure 3.4 and Figure 3.5 show predictions for the modified Boltzmann and 

Boltzmann choice functions respectively.  In all cases, the mean number of days needed 

to complete the first stage was computed using Equations (2.34) and (2.37), while the 

predictions for stage two were computed with Equations (2.42) -(2.44) and the 

appropriate choice function equations (Chapter 2).  The range of γ  was limited by the 

predictions in stage one and only γ  values predicting 2.1 10.0D< <  were considered.  

The dashed lines on each graph show the empirical values from the experiment.  If all the 

dashed lines cross the associated solid lines at the same, or similar, γ  value, the model 

fits the data well.  For all three choice functions, smaller values of γ  lead to choosier 

(steeper) choice functions, and as is clear from the figures, choosier choice functions are 

needed to fit the results from stage one and less choosy choice functions are needed to fit 

the results from stage two. 
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Figure 3.3  Predictions from the Gaussian model.  The dashed lines depict the 
empirical values and solid lines model predictions.  The top graph shows the 
predicted mean number of days needed to complete stage one.  The middle graph 
depicts the predicted mean value (in black) and CV (in red) for the adjusting option 
in the small treatment, and the bottom graph depicts the same in the large treatment.  
The black dotted line in the bottom two graphs shows the value of the standard option 
in each treatment. 

 Clearly none of the models displayed in Figure 3.3-Figure 3.5 produce a good 

quantitative fit over the parameter ranges tested.  Although each model can fit the data 

from stage one using an appropriate γ  value, none of the models can come close to 

matching the numerical values for Jr  on either treatment.  Only the Boltzmann choice 

function is able to reproduce the empirical CV and only in the smaller treatment.  All 

three models appear unable to reproduce the quantitative results from stage two over the 

parameter ranges tested, let alone fit the data from both stages with the same parameter 

value. 

However, the models do replicate several qualitative aspects of the data.  All three 

models predict some titration bias:  the Gaussian and the modified Boltzmann choice 

functions predict a substantial titration bias in both treatments while the Boltzmann 

choice function predicts a smaller bias in the 3 pellet treatment and no bias in the 9 pellet 

treatment.  Moreover, all three models predict larger CV values in the 3 pellet treatment 

than in the 9 pellet treatment. 
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Figure 3.4  Predictions from the modified 
Boltzmann choice function.  All symbols are as 
in Figure 3.3. 

Figure 3.5  Predictions from the Boltzmann 
choice function.  All symbols are as in Figure 
3.3. 

Analytic results 

 The Boltzmann choice function predicts less of a titration bias than the other two 

choice functions over the parameter ranges depicted in Figure 3.3-Figure 3.5.  The source 

of this discrepancy is made clearer by examining the potential, V , which is equal to the 

probability of making correct choices on both choice trials in a block (Figure 3.6).  When 

the value of the adjusting option is less than the value of the standard option, i.e. 

 for ( , the potential, ( )J Sr n r l= − 0,1,..., )Sl = lV− ,  is equal to the probability of choosing 

the standard option twice 

 ( )( )2
1 ,l SV r l− = − −C Sr

)

l+

. (2.47) 

When the adjusting option is larger than the standard, the potential is equal to the 

probability of choosing the adjusting option twice 

 . (2.48) 2( ,l S SV r l r+ = +C

The experimental results in Figure 3.1 show an asymmetric potential with .  A 

model will predict this asymmetric potential if  

lV V− >

 ( )( )2 21 , ( ,S S S Sr l r r l r− − > +C C ) . (2.49) 
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Figure 3.6  The potential as a function of the value of the adjusting option.  The top graphs show 
model predictions using the γ  values suggested in stage one of the experiment (Gaussian =1.12,  
Boltzmann = 6.6, Boltzmann-M = 0.56).  These values were estimated from Figure 3.3-Figure 3.5.  
The bottom graph shows predictions with 0.4γ =  for all models.  Note that the Gaussian and 
modified Boltzmann functions are asymmetric about the value of the standard, increasing more 
quickly to the left, while the Boltzmann choice function is symmetric.   

Rearranging Equation (2.49) using condition C.2, gives  

 ( , ) ( ,S S S Sr l r r r l− <C C +  (2.50) 

which is equivalent to the definition of strict R-concavity in Equation (2.18).  Any strictly 

R-concave choice function will thus produce an asymmetric potential, but R-affine 

functions will not.  So difference-based choice functions, like the Boltzmann, will not 

produce asymmetric potentials, but ratio-based choice functions, like the Gaussian and 

modified Boltzmann, will.  Thus the empirically observed asymmetric potential is more 

consistent with a ratio-based choice function than with a difference-based choice 

function. 
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In general a potential asymmetry will produce a titration bias.  Think of the state 

of the system (shown on the x-axis in Figure 3.6) as undergoing a random walk.  

When J Sr r= , the system is in an effective equilibrium where the probability of taking a 

step to the left or the right (the potential) is equal.  Away from equilibrium, the potential 

is equivalent to the probability that the system will take a step back towards equilibrium.  

To the right of equilibrium, the probability of stepping back towards equilibrium, lV+ , 

increases more slowly than does the probability to the left, lV− .  So the system will tend 

to wander further to the right than it will to the left because on the right there is less 

potential ‘pushing’ the system back towards equilibrium.  Any choice function that 

produces this asymmetric potential will predict a larger expected value for the adjusting 

option and thus a titration bias. 

Define the titration bias as J Jr rSΔ = − .  Appendix 1 proves that all strictly R-

concave choice functions predict a titration bias with 0JΔ > .  However, Appendix 1 also 

shows that R-affine choice functions predict a titration bias, 0JΔ > , but that more 

extreme values for γ  are needed for the bias to become substantial.  This bias is not a 

result of asymmetry in the potential but is instead a result of bounding the system at zero.  

Since the system is allowed to wander infinitely far to the right but only  steps to the 

left (bounded at zero), the titration is inherently biased.  However, the magnitude of this 

effect is small for R-affine choice functions with steep slopes, and the difference-based 

Boltzmann choice function can only generate a substantial titration bias with relatively 

large 

Sr

γ  values, in contrast to the small values needed to fit the results from the first stage 

of the experiment. 

Adding a utility function 

Taken together, the asymmetric potential and substantial titration bias suggest 

strongly that the starlings use ratio-based choice functions.  Nonetheless, despite the 

better performance by ratio-based choice functions, none of the simple models produced 

a good quantitative fit to the empirical data.  Especially in the 9 pellet treatment the 
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empirical titration bias was substantially larger than the bias predicted by any of the 

models over the parameter ranges tested.  By embellishing these simple models, for 

example by adding a non-linear utility function, model fit can be improved.  In fact, a 

non-linear utility function is able to induce a more asymmetric potential, and thus a more 

extreme titration bias, even for R-affine choice functions. 

In another paper, BK (1996) conducted a similar titration experiment but the 

titration failed to stabilize, and the value of the adjusting option increased continually.  

The reward sizes involved were quite large, and BK suggested that the starlings were 

unable to accurately measure such large rewards and thus effectively did not differentiate 

between the adjusting option and the standard option.  In this vein, consider an agent that 

cannot count above a certain number.  Able to count only up to some highest value, the 

agent will treat all larger rewards as having the same value.  This can be represented with 

the utility function  

 ' '( ) min( , )r r β=U . (2.51) 

Here β ∈] is the parameter determining how high the agent can count.  This simplistic 

utility function is actually able to improve the model performance in the 9 pellet 

treatment. 

Figure 3.7 shows model predictions on the 9 pellet treatment using the utility 

function with 10β = .  The addition of the new utility function substantially improves 

model fit for all three models.  The ratio-based choice functions can fit the results from 

the 9 pellet treatment and the results from stage 1 with similar γ  values (compare Figure 

3.7 with the stage one predictions in Figure 3.3 and Figure 3.4).  The Boltzmann choice 

function also displays a substantial titration bias but it is not as large as the other two 

models.  Note that this utility function with 10β = will have no impact on model 

predictions during stage one and only minimal impact on model predictions in the 3 pellet 

treatment, so the utility has a net positive impact on model performance overall. 

As shown in Figure 3.8, the utility function increases the titration bias in the 9 

pellet treatment because it reduces the probability of a correct choice when the system is 

to the right of equilibrium ( ).  With a smaller potential to the right of equilibrium, 9Jr >
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Figure 3.7  Model predictions in the larger 9-pellet treatment 
using the non-linear utility function with 10β = . 

the system can more easily move in that direction.  Note that values of 10β <  will lead, 

in the large treatment, to violations of the condition in Equation (2.45).  In such cases, 
'( ) (Sr j r+ = ' )SU U  for all positive integers , both actions will be chosen with equal 

probability, and the system will undergo a truly random walk to the right of the value of 

the standard option. 

j

This utility function, while highly contrived, presents a simple way to improve 

model predictions, and many concave utility functions will have similar effects.  The take 

away point is that increasing the asymmetry in the potential will increase the titration 

bias.  Moreover, reducing the choosiness of the choice function (larger values for γ ) will 

reduce the slope of the potential while simultaneously increasing the titration bias and the 

CV of the titrating value.  However, less choosy choice function will also reduce the 

choice probability during stage one and thus increase the number of days needed to 

complete the stage.  Interestingly, increasing the length of the agent’s memory is a natural 

way to reduce the effective choosiness of the choice function during stage two, while not 

substantially impacting the time needed to complete stage one. 
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Figure 3.8  The potential with a non-linear utility function.  The 
utility function is shown with 10β =  and the same γ  values as 
in the top row of Figure 3.6.  The dashed lines show the values 
with a linear utility function (equivalent to β = ∞ ). 

If the memory is longer than four, behavior will depend on the value of the 

adjusting option in previous trials and will lag behind the current value during stage two.  

This could reduce the slope of the potential and increase the CV of the titrating value.  

Moreover, if the averaging function maintains or increases the asymmetry in the slope of 

the potential, the titration bias will persist or grow.  In stage one this modification will 

only increase the predicted time to completion slightly, for once the memory is ‘full’ 

model predictions are as derived above. 

Unfortunately, increasing the memory length also increases the complexity of 

model dynamics, and the preceding proofs lose validity.  In lieu of analytic formulas, at 

this point I must resort to simulation to obtain model predictions.  Chapter 7 conducts 

simulations for these experiments in the context of a larger analysis of DELA model 

performance. 

Discussion 

The observed asymmetry in the potential functions, as well as the observed 

titration bias, is more consistent with ratio-based choice functions than with difference-

based choice functions.  These results do not rule out difference-based choice functions 

since non-linear utility functions can lead to similar phenomena.  Nonetheless, on the 
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whole these results suggest strongly that the starlings are using ratio-based choice 

functions.  If so, the Boltzmann choice function, despite its prevalence in the 

reinforcement learning and AI literature, is probably not a good model for the way 

organisms make decisions.  A more complete analysis of model performance, presented 

in Chapter 7, will further strengthen this view. 

If organisms do indeed use ratio-based choice functions, results derived with the 

titration procedure must be reevaluated because this procedure will always lead to biased 

indifference points.  Interestingly, this bias is a result of the way the titration is 

conducted.  The titration procedure treated here, as well as most other published 

procedures, utilizes an arithmetic step size, adding or subtracting one unit from the value 

of the adjusting option.  However, there are other ways to conduct the titration; Lea 

(1976) utilized an alternative approach with a geometric step size:  titration proceeded by 

either multiplying or dividing the value of the adjusting option by 1.5.  Interestingly, Lea 

(1976) did not find a titration bias with this procedure, instead finding indifference points 

almost exactly equal to the value of the standard option.  Geometric adjustment makes 

more sense for a ratio-based choice function, and perhaps the titration procedure would 

be more accurate if geometric adjustments were always used.  

One additional aspect of this experimental results deserves comment, namely the 

discrepancy between the results from stage one and stage two.  For the simple models 

considered here, choosier choice function were needed to fit the results from stage one 

while less choosy functions were needed to fit the results from stage two.  Interestingly, 

the environment was stationary during stage one but transient during stage two.  Less 

choosy choice functions will lead to more exploration/sampling of sub-optimal options.    

In transient environments where reward distributions can change unexpectedly, 

exploration/sampling is more valuable, and reduced choosiness makes intuitive sense. In 

stationary environments, there is less uncertainty and thus a premium on exploitation and 

choosier choice functions.  So the discrepancy between experimental stages could be 

explained if the starlings are able to recognize environmental transience and respond 

differently to transient environments than to stationary ones.   
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Chapter 7 will further explore this hypothesis using data from several additional 

experiments with starlings.  Most of these other experiments presented the birds with a 

special type of multi-armed bandit problem, the basic risk sensitivity experiment, which 

is functionally equivalent to a one-armed bandit problem.  In the next chapter I introduce 

the basic risk sensitivity experiment, and review some theories and experimental results 

from risk-sensitive foraging theory.  After proving some results about the risk sensitive 

behavior of ratio-based DELA models in Chapters 5 and 6, Chapter 7 will return to the 

issue of model selection and hopefully shed some more light on behavioral differences in 

the face of transient environments.
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Chapter 4 Risk sensitivity  

 
 Consider an organism faced with a choice between two food sources providing 

the same mean amount of food but with different variances.  One option always provides 

the same reward, while the other provides either a large or a small reward with equal 

probability.  If the organism is offered a repeated choice between these two options, 

which will it prefer? 

An organism that displays a preference when faced with the preceding problem is 

said to exhibit risk sensitivity.  Here risk refers to the uncertainty/variability/variance in 

the rewards.  If the organism prefers the constant or certain option, it is called risk averse, 

and if it prefers the variable or uncertain option, it is called risk prone.  Risk sensitivity in 

this sense is of great interest in economics, psychology, and animal foraging (Bateson 

and Kacelnik, 1996; Weber et al., 2004).   

Experimentalists have focused on documenting the risk preferences that 

organisms or individuals express while theorists have attempted to provide explanations, 

justifications, or models for these behaviors.  This chapter will explore the main 

experimental results, and some proposed models, from the animal behavior literature. 

 

The formal problem 

  The basic risk sensitivity experiment (BRSE) in animal foraging presents an 

organism with a choice between two foraging options providing food rewards.  The 

constant (or certain) option always delivers the same reward, ; the variable (or 

stochastic) option delivers either a large reward, 

'
cr

'r+ , or a small reward, , with 

probability 

'r−

p+  and p−  respectively.  All rewards are non-negative, , and the 

rewards are selected so that both options provide the same mean reward:  

'
ir +∈\

 ' ' '
c vr r p r p r '

+ + −= = + −  (3.1) 
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where '
vr  is the mean value of the rewards from the variable option.  The action set has 

two possible actions, , corresponding to foraging on the constant or variable 

option respectively, and the reward set contains three possible values:  

{ , }c vA a a=

' ' '{ , , }c
'R r r r+ −= .  In 

general the reward distributions are held constant and the BRSE environment is 

stationary.  From a LA perspective, the BRSE presents a Q-model one armed bandit 

problem. 

Many foraging experiments characterize rewards with two dimensions:  a reward 

size, , and a waiting time or delay to the reward, .  For example, the experiment in 

Chapter 3 delivered rewards five seconds after the bird pressed key, so , and the 

reward size was equivalent to the number of pellets provided.  In such cases the physical 

rewards are represented as bivariate vectors and in general  

s w

5w =

  (3.2) ' ' '{ , } { , } { , }c c cs w s w s w+ + + − − −= = =r r r

for the BRSE.  However, variance is usually introduced in only one dimension, either 

into the waiting time or the reward size but not both.  If variance is introduced into the 

reward size, the waiting times are identical and the reward sizes are chosen so that the 

mean values are equal (Figure 4.1-a).  If variance is introduced into the waiting times, the 

reward sizes are identical and the mean waiting times are equal (Figure 4.1-b).  As we 

shall see, organisms appear to respond differently depending on whether variability is 

introduced into the reward sizes or the waiting times. 

An organism’s preference is usually summarized by the asymptotic proportion of 

choices for the variable option, θ .  Let  be the total number of choices for the variable 

option on the  trial of an experiment.  Then 

nN

thn

 lim n

n

N
n

θ
→∞

= ,  (3.3) 

and if .5θ > , the organism displays risk prone behavior, while .5θ <  denotes risk averse 

behavior.  Of course most experiments are only run for a finite number of trials, in which 

case the limit in Equation (3.3) is not infinite.  Nonetheless, Equation (3.3) is useful for 

deriving model predictions.  Ideally, the preference value predicted by a model,θ� , should 

be compared quantitatively with the empirically observed value, θ , but it is fairly 
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Figure 4.1- Two possible experimental schedules for the BRSE.  The top figure shows a 
schedule with variability in amount, while the bottom figure shows a schedule with variability 
in the waiting time.  In both cases, the variable option and the constant option provide the 
same mean reward and waiting times.

common (e.g. Bateson and Kacelnik 1995b) to instead  focus on correctly predicting the 

direction of risk sensitivity while ignoring the magnitude.  Perhaps due to the complexity 

of the experimental subjects (usually birds), model assessment is often limited to 

determining whether a model appropriately predicts .5θ >  or .5θ <  in concert with the 

observed experimental results. 

 The BRSE can be modified and complicated in many ways.  For example, the 

organism can be presented with more than two options, options that deliver more than 

two rewards, or options that deliver rewards with different mean values.  In all cases the 

behavior of interest is the development of preferences based on the variance, not the 

mean, of the rewards provided.  Although here the problem is formulated as a foraging 

problem with food rewards, the basic framework is easily applied to rewards other than 

food, and many of the models discussed below have their roots in economics and 

psychology.  The following brief survey of experimental work and published models, 

however, will focus on the animal behavior literature.  See Weber et al. (2004) for a 

recent review of similar experimental results from humans.  An extensive review of the 

experimental work from animal behavior can be found in Kacelnik and Bateson (1996), 

and Bateson (2002) reviews some more recent experimental results.  Here I summarize 
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some of the major experimental commonalities, especially those discussed in Kacelnik 

and Bateson (1996). 

 

Main experimental results 

The direction of risk sensitivity generally depends on which dimension is 

variable.  Organisms tend to be risk averse with respect to variability in gains or benefits 

but risk prone with respect to variability in costs or punishments (Weber et al., 2004; 

March, 1996).  In foraging experiments with bivariate rewards, , the waiting 

time is effectively a cost but the size represents a gain.  Consistent with the more general 

pattern of risk aversion for gains and risk preference for losses, foraging organisms tend 

to be strongly risk prone when variance is introduced into the waiting time but weakly 

risk averse or indifferent when reward sizes are variable (Kacelnik and Bateson, 1996). 

' { , }i i ir s w=

The pattern of strong risk preference for variability in waiting time but weak risk 

aversion for variability in amount is pervasive but not universal.  There is also some 

evidence that an organism’s risk preferences can change as a function of its energetic 

state.  In a classic experiment, yellow-eyed juncos (Junco phaeonotus) were risk averse 

while on positive energy budgets but risk prone under negative energy budgets (Caraco et 

al. 1990).  This so-called energy budget rule (Stephens and Krebs, 1986) has been 

replicated in several other studies, but there is some evidence that it only applies to 

smaller organisms and that larger animals do not display such transitions (Kacelnik and 

Bateson, 1996).   

 The energy budget rule and the asymmetry in risk preferences are probably the 

two most pervasive and well documented results from the literature.  However, the 

utility-estimator-choice modeling framework presented in Chapter 2 does not incorporate 

any energetic considerations, so energy budget effects cannot emerge.  Thus the 

following discussion will focus on the asymmetry in risk preferences and models that can 

generate these asymmetries. 

 From the perspective of basic optimal foraging theory (Stephens and Krebs, 

1986), risk sensitivity is a puzzling phenomenon.  Most classical foraging models assume 



55 
 

 

that organisms try to maximize their long term rate of energy intake.  However, in the 

BRSE both options provide equivalent long term rates of energy intake, and classical 

foraging models predict risk indifference.  The overwhelming experimental evidence for 

risk sensitivity has motivated the formulation of a variety of models trying to explain how 

and why organisms display risk sensitive behavior. 

 Most models generate risk sensitive behavior either through the utility function or 

through the dynamics of the learning process.  Utility based models utilize a non-linear 

utility function, , to generate the observed risk sensitive behavior.  Learning based 

models exploit the fact that simple learning models, including many of those discussed in 

Chapter 1, can produce risk sensitive behavior.  Learning based models are discussed in 

the next chapter, and the remainder of this chapter reviews some of the utility based 

models. 

U

 

Utility based models for risk sensitivity 

 Non-linear utility functions are perhaps the most common explanations for risk 

sensitive behavior.  The BRSE arises when an organism is presented with two options 

providing the same mean physical rewards but with different variances.  However, the 

means are only equivalent from the experimenter’s perspective, and Equation (3.1) refers 

to the physical rewards, , as measured by the experimenter.  If the utility function, , is 

non-linear then the mean subjective rewards might be unequal, 

'
ir U

 ( )c v vr r E r p r p r+ + − −≠ = = + , (3.4) 

despite the fact that ' ' .  Assuming that the organism’s choice function depends on 

the long term average of the subjective rewards from each option, the inequality in 

Equation 

c vr r=

c(3.4) can lead to risk sensitivity and  suggests risk prone behavior. ( )vE r r>

 Risk sensitivity from non-linear currencies is generally a direct result of Jensen’s 

inequality which states that, if '( )rU  is a convex function and is a random variable, 'r

 ( ) ( )'( ) ( )E r E r≥U U ' . (3.5) 
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Figure 4.2-  Risk sensitivity as a result of a non-linear utility function.  The left graph depict a 
concave, and risk averse, utility function while the right graph shows a convex, and risk prone 
utility function.  The solid black line shows the utility function, and the dotted line shows the linear 

'r r=  line.  The physical rewards depicted are  (shown as dashed green lines), ' '0.8, 0.4r r+ −= =

and  (shown in red).  The mean value of the utilities is shown as a solid green line. ' 0.6Dr =

The inequality is strict if '( )rU  is strictly convex.  On the BRSE, ' ' '( )c v vr r E r= = , and 

Equation (3.5) is equivalent to  

 ( ) ( ) ( )' '( )v c v cE r r E r≥ → ≥U U r

+

. (3.6) 

So by Jensen’s inequality, strictly convex utility functions will produce risk prone 

behavior, but strictly concave utility functions will produce risk averse behavior.  This 

effect is depicted in Figure 4.2. 

 Non-linear utility functions are pervasive in the economic literature as models for 

risk sensitive behavior.  In economics, expected utility theory (Von Neumann and 

Morgenstern, 1947) and prospect theory (Kahneman and Tversky, 1979) both utilize non-

linear utility functions.  These models can also be applied directly to animal foraging 

experiments, but the focus in the foraging literature is often slightly different due to the 

bivariate rewards (waiting time and reward size).  Within foraging theory, models specify 

a utility function, 2: + →\ \U , that can generate the experimentally observed 

asymmetry in the response to variance in waiting time and variance in reward size.   
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The expectation of ratios (EOR) or short term rate maximization model (Bateson 

and Kacelnik 1996, Harder and Real 1987), for example, proposes that organisms use the 

utility function 

 ( , ) sr s w
w

= =U . (3.7) 

This utility is linear with respect to , so for a BRSE with variance in reward size 

(

s

  and  c v cs s p s p s w w w+ + − − + −= = + = = ), this utility predicts risk indifference: 

 ( ) c
v

c c

p s p s sr
w w

+ + − −+
cr= = = . (3.8) 

However, this utility is strictly convex with respect to .  Thus for a BRSE with variance 

in waiting time (

w

c vw w w p w p+ + − −= = +  and cr r r+ −= = ), the EOR utility predicts risk 

prone behavior as a direct result of Jensen’s inequality.  So the EOR successfully predicts 

the observed risk prone behavior for variability in waiting time, but cannot generate risk 

averse behavior for variability in reward size. 

The EOR utility has the unattractive feature that it goes to ∞  as .  The 

hyperbolic-decay utility function (Mazur, 2001; Mazur, 1984) eliminates this unwanted 

feature and introduces a free parameter, 

0w→

0α > : 

 ( , )
1

sr s w
wα

= =
+

U . (3.9) 

This utility function is finite for all values of , and is hence more realistic in practice 

than the EOR utility.  This utility function remains strictly convex with respect to , so it 

will still predict risk prone behavior for variability in waiting time.  It also remains linear 

with respect to reward size and thus predicts risk-indifference for variability in amount. 

w

w

If there is a positive correlation between the reward size and the waiting time in 

the denominator of Equation (3.7), then the EOR utility further predicts risk aversion for 

variability in amount (Caraco et al.,1992 ).  The EOR utility can be modified to introduce 

this correlation by assuming that the organism also includes the time needed to consume 

the reward in the denominator.  Consider the following modification of the EOR utility: 

 ( , ) sr s w
s wα

= =
+

U . (3.10) 
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Here 0α >  denotes the time needed to consume one unit of food, and this utility function 

assumes that the time needed to consume a reward increases linearly with the size of the 

reward.  Importantly, this utility is concave with respect to s  and so by Jensen’s 

inequality predicts risk aversion for variability in amount.  Of course any utility function 

that is concave with respect to  and convex with respect to  will produce the observed 

asymmetry in risk preferences.  Many different currencies have been proposed but few 

have the proper concavity and convexity properties, as most authors have focused on 

biologically realistic and intuitive currencies (see K&B, 1996 for a review).  

s w

Models with non-linear currencies display what I will call apparent risk 

sensitivity:  what appears to the experimenter as a preference based on variance is, from 

the organism’s perspective, simply a preference based on means.  When the proper units 

(subjective rewards) are used, the behavior can be seen as a choice based on the average 

values.  In contrast, genuine risk sensitivity involves a preference between two options 

even when the means are equal from the organism’s perspective, i.e. vr r= c .  In this 

sense, utility based models are unable to produce genuine risk sensitivity by definition; 

genuine risk sensitivity must be produced by some other aspect of the decision 

mechanism. 

Within the utility-averaging-choice structure, models need to additionally specify 

averaging and choice functions in order to generate quantitative model predictions.  The 

averaging function specifies how the organism combines multiple rewards from a food 

source into an estimate of the source’s overall value, and the choice function translates 

these estimates into probabilities of action or choice.  In order to generate genuine risk 

sensitivity, appropriate averaging and choice functions are also needed. 

 Recall that most utility based models assume that the organism’s decision is based 

on a comparison of the expected value of the rewards, i.e.  vs. .  We can think of 

these models as implicitly assuming that the organism is using the long term averaging 

function (LTA, Chapter 2) to estimate expected reward values.  After sufficient samples 

from the variable option, the estimate derived with a long term average, , will 

necessarily converge to the expected value  by the weak law of large numbers.  

( )vE r cr

v̂r

( )vE r
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Any model using a LTA, a proper choice function, and a strictly concave utility function, 

will display risk averse behavior.  However, this is apparent risk sensitivity.  As we shall 

see in the next Chapter, other averaging functions are able to generate genuinely risk 

sensitive behavior even when v cr r= .
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Chapter 5  The hot stove effect 
 
 While utility based models are the most common explanations for risk sensitive 

behavior, models emphasizing the role of learning have also been proposed.  Experiential 

learning models, as exemplified by the learning rule for classical LA or by the averaging 

function in a DELA model, can generate risk aversion on the BRSE simply because of 

the dynamics of the sampling process.  Several authors have noted this tendency towards 

risk aversion, and it has been called the hot stove effect (Denrell and March, 2001), in 

honor of the Mark Twain quote: 
 
We should be careful to get out of an experience only the wisdom that is in it – and stop there; lest 
we be like the cat that sits down on a hot stove lid.  She will never sit down on a hot stove lid 
again—and that is well; but she also will never sit down on a cold one. 
 

An unpleasant experience associated with an action will, for a learning organism, 

generally decrease the probability of choosing that action in the future.  However, an 

experiential learner will only learn about the returns from an action by engaging in the 

action.  The cat, traumatized by one bad experience, will likely never sit down on the 

stove again and thus can’t learn that sitting on a warm stove lid might be quite pleasant.  

The unpleasant experience effectively scares the cat off, and the cat does not learn about 

the potential for good returns from sitting on the stove. 

 In the context of the BRSE, the hot stove effect can lead to risk aversion because 

of runs of bad luck.  After a run of bad luck, i.e. several small rewards from the variable 

option, many learning agents will underestimate the ‘true’ expected value of the variable 

option relative to the certain option and reduce their probability of choosing the variable 

option accordingly.  When the agent is overestimating the value of the variable option, 

i.e. after a run of good luck, the probability of selecting the variable option will increase.  

Since an overestimate increases the probability of selecting the variable option, this type 

of estimation error will be corrected quickly, but an underestimate will tend to persist 

because it reduces the probability of selecting the variable option (Denrell, 2005).  Thus 

the organism will spend more time underestimating the value of the variable option, and 

will tend to be risk averse. 



61 
 

 

March (1996) used computer simulations to demonstrate that three simple 

decision mechanisms would generate genuinely risk averse behavior on the BRSE.  

March’s first model, the fractional adjustment model, is a version of the Bush and 

Mosteller (1958) linear reward penalty (LRP) model (discussed in Chapter 1).  The other 

two models are equivalent to DELA models; both use the matching choice function, but 

the second uses a long term average (LTA) while the third uses an exponentially 

weighted moving average (EWMA).  The LRP and EWMA models displayed risk 

aversion throughout the model simulations.  The LTA model, although eventually 

converging to indifference, showed risk aversion in the short term.  Thus all three models 

could generate short term risk aversion, but the LTA model failed to generate any long 

term risk preference.   

Other authors have proposed similar learning models as explanations for risk 

aversion.  Weber et al. (2004) use a version of the LRP model and compared the results 

to human choice data, while Keaser et al. (2002) test a model equivalent to March’s 

EWMA model using data from bumblebees.  Also with data from bumblebees, Shapiro et 

al. (2000) simulate the EWMA based model proposed by Couvillon and Bitterman 

(1991).  All of these studies used computer simulations in order to demonstrate the risk 

sensitive characteristics of the models. 

While simulation is the most common method for obtaining model predictions, 

Denrell (2005) and Niv et al. (2004) were able to show analytically that certain types of 

learning models will always produce risk aversion.  Denrell considered an S-model 

environment with positive and negative rewards that is quite different from the BRSE, 

while Niv et al. focused only on models using EWMA averaging functions. The 

remainder of this chapter presents a proof for the BRSE environment, demonstrating that 

a specific class of DELA models will always produce risk averse behavior.  All three 

proofs have some fundamental similarities, but utilize different formalisms. 
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A general DELA model for the BRSE 

 Consider a DELA model using a separable, length-W averaging function.  On the 

BRSE, the agent’s state is represented by two memory vectors,  and , each 

of lengthW , with 

( )v nΨ ( )c nΨ

( ) W
i n +∈Ψ \  for { , }i c v∈ .  Recall that v  denotes the variable option,  

the constant option, and  the trial number.  An averaging function, , 

converts each memory vector into an estimate of the expected value for the associated 

food source  

c

n : W
+ +→\ \A

 ( )ˆ ( ) ( )i ir n n= ΨA   { , }i c v∈ . (4.1) 

 Let ( ) [0,1]nφ ∈  denote the probability of selecting the variable option on the next trial, 

( ) ( ) Pr( ( ) )vn P n a n avφ = = = .  This probability is generated by a choice function, 

, that acts on the estimates: 2: + →\ \C +

 ˆ ˆ( ) ( ( ), ( ))v cn r n r nφ = C . (4.2) 

Since some action must be chosen on each trial, the probability of choosing the constant 

option is equal to1 ( )nφ− .  The agent’s state is determined by its memory vectors and the 

model dynamics are driven by the action of the averaging and choice functions on these 

memory vectors. 

For a separable length-W averaging function, the memory vector  records 

the values of the last W rewards obtained from action as of the nth sample.  The 

variable option provides two different rewards and one possible realization for the 

memory vector might be  

( )i nΨ

ia

( ) { , , , , , }v n r r r r r r+ − − + − −=Ψ . 

In this example , and the rightmost value represents the most recent reward.  When 

a new sample is obtained from the variable option, the organism ‘forgets’ the first 

element on the list and appends the new sample.  Thus the memory functions as a finite 

length queue that is updated by eliminating the leftmost element and appending a new 

value on the right.  Importantly, the memory vectors only change when the associated 

6W =
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,..., }c c c c cn r=

actions are chosen.  With this updating rule, the organism’s memory for a food option can 

only change when that food option is chosen or experienced. 

On the BRSE, after W  samples from the constant option the associated memory 

vector will be Ψ  and will not change thereafter, so this memory 

vector is effectively constant after enough samples are taken.  The memory for the 

variable option can be represented as a length-W binary sequence, with a one 

representing  and a zero representing r

( ) { , ,r r r

r+ − .  There are thus  possible states for the 

variable memory vector and associated with each state is a unique 

integer, , such that 

2W

( ) {0,1,2,3,...2 1}WnΨ ∈ − ( )nΨ  is the integer corresponding to the 

binary sequence .  We can think of the organism’s state as defined completely by 

the integer  and rewrite the averaging function as 

( )v nΨ

( )nΨ ( )ˆ ( ) ( )vr n n= ΨA . 

Using this representation, the memory or state updating operation can be 

represented as an arithmetic operation 

 ( ) *( ), ( ) (2 ( ) ( )) mod 2Wn r n n r nμ 1−Ψ = Ψ + , (4.3) 

where  and *( ) 1  if  ( )r n r n r+= = *( ) 0  if  ( )r n r n r−= = .  Here ( , )rμ Ψ  is a left bit-shift 

operation, shifting the bits in the associated binary sequence one place to the left and 

appending the new sample; the modulus operation is needed because of the finite 

memory.  The full learning rule is then 

 
( ( ), ( ))  if   ( )

( 1)
( )                else

Vn r n a n a
n

n
μ Ψ =⎧

Ψ + = ⎨Ψ⎩
, (4.4) 

and after each trial the organism’s state is updated according to Equation (4.4).  The next 

action is then selected using the averaging and choice functions as in Equations (4.1) and 

(4.2).  Since  is constant after W samples from action , the associated estimate 

 will also be constant and hereafter will be denoted as .  In what 

follows I will often suppress the choice function’s dependence on and express the 

choice function as 

( )c nΨ ca

(ˆ ( ) ( )cr n n= ΨA )c ĉr

ĉr

ˆ( ) ( ( ))vn r nφ = C , or equivalently ( )( )( ) ( )n nφ = ΨC A . 
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i

Model dynamics as a semi-Markov process 

 Note, from Equation (4.4), that state transitions only occur when the variable 

option is chosen.  Say that the system occupies state  when i ( )nΨ = , and let the random 

variables  denote the trials on which state transitions occur, i.e. trials 

when the variable option is chosen.  Let 

1 2 3 ...S S S< < <

Zη ,η∈] ,  denote the state entered on trial Sη , 

i.e. .  The stochastic process {1( ) {0,1, 2,...2 1}WZ Sη η
−= Ψ ∈ − ( ), }n nΨ ∈]  is then a 

discrete time semi-Markov process with a finite state space (Howard, 1971; Gallager, 

1996).  The sequence { , }Zη η ∈]  is called the embedded Markov chain for this semi-

Markov process.  For a semi-Markov process, the number of trials between state 

transitions in the embedded chain is a random variable. 

The transition probabilities, 1Pr( | )ijP Z j Zη η− i= = = , for the embedded chain are 

given by 

 
if  ( , )
if  ( , )

0      else
ij

p j i r
P p j i r

μ
μ

+ +

− −

=⎧
⎪= =⎨
⎪
⎩

. (4.5) 

for .  The transition probabilities for the embedded chain are 

determined solely by the variable option’s reward probabilities, and the embedded 

Markov chain defined by Equation 

, {0,1,..., 2 1}Wi j∈ −

(4.5) is irreducible and positive recurrent.  Hence 

there exists a stationary distribution for the embedded chain, and this distribution has 

steady state probabilities, e
iπ , that represent the long term probability of finding the 

system in the state i .  Importantly, e
iπ  is equivalent to the probability of obtaining the 

binary string associated with the integer .  In other words, if we let  be the number of 

ones in the binary string corresponding to the integer , then the stationary probability of 

finding the system in state i  is 

i ik

i

 ik W ke
i p pπ i−

+ −= . (4.6) 

However, the number of trials spent in state i  before moving to another state is a random 

variable. 
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Define the holding time, Tη , as the number of trials needed before moving to 

another state, i.e. the interval between state transitions:  1T S Sη η η−= − .  The holding time 

can be thought of as the number of trials needed to obtain a single success (choose the 

variable option).  The probability of choosing the variable option on the trial, 

, depends only of the current state,

thn

( )( ˆ( ) ( ) , cn nφ = ΨC A )r ( )nΨ .  The holding time in 

each state is thus a geometrically distributed random variable with success probability 

ˆ( ( ), )i i rcφ = C A  and distribution 

 1
1Pr( | ) (1 )t

iT t Z iη η iφ φ−
−= = = − . (4.7) 

If we assume that 0iφ >  for all {0,1,...2 1}Wi∈ − , then the expected holding time in state 

, i iT , is the expected value of a geometric random variable 

 1
1 1( | )

ˆ( ( ), )i
i c

T E T Z i
i rη η φ−= = = =

C A
. (4.8) 

 Recall that we want to predictθ , the expected proportion of choices for the 

variable option, as defined in Equation (3.3).  Since  denotes the cumulative number of 

choices for the variable option as of the trial, it also represents the total number of 

state transitions for the semi-Markov process {

nN

thn

( ), }n nΨ ∈]  as of trial .  One of the 

most important results for semi-Markov processes (see e.g. Howard 1971) is that  

n

 
2 1

0

1lim W
n

n
e
i i

i

N
n

T
θ

π
−→∞

=

= =

∑
, (4.9) 

where the e
iπ  are the stationary probabilities for the embedded chain.  Using Equation 

(4.8), and suppressing the dependence on  this becomes ĉr

 
2 1

0

1
1

( ( ))

W

e
i

i i

θ
π

−

=

=

∑ C A

. (4.10) 
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The sum in the denominator is the expected value of a function, 1  of a random 

variable, , whose asymptotic distribution is given by the embedded Markov chain, 

i.e.  

/ ( (.))C A

( )nΨ

 

( )

1
1

( ( ))eE
n

θ =
⎛ ⎞
⎜ ⎟

Ψ⎝ ⎠C A

, (4.11) 

where  denotes the expected value with respect to the embedded chain.   eE

The right hand side of Equation (4.11)  is the harmonic mean (expected value), 

, of a function of a random variable with respect to the embedded Markov chain, so 

we can rewrite it as 

(.)eH

 ( )( )( ( ))eHθ = ΨC A n . (4.12) 

Equation (4.12) says that the expected proportion of choices for the variable option is 

equal to the harmonic mean (harmonic expected value) of the probability of choosing the 

variable option in each memory state {0,1,...2 1}Wi∈ − .  Note from Equation (4.10) that 

states  with a small probability of selecting the variable option, , will 

substantially decrease the resulting value of 

i ( ( )) 0i ≈C A

θ .  When the memory is in these ‘bad’ states 

(small iφ ), the organism will be less likely to choose the variable option, leading to longer 

holding times.  The ‘bad’ memory states will persist for a longer period of time, thus 

generating the hot stove effect identified by Denrell and March.  The organism 

effectively under samples the ‘good’ memory states and spends more time in the ‘bad’ 

memory states.  As one might expect, this effect can generate risk aversion. 

 

Consequences for risk sensitivity 

To prove that the hot stove effect produces risk aversion we will need some 

additional restrictions on the choice and averaging functions.  In addition to the 

definitions of proper and R-concave choice functions (Chapter 2); we will also need to 
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define two characteristics of the averaging functions, : W
+ +→\ \A .  First, say that an 

averaging function is unbiased for a given BRSE if  

 ( )( )ˆ ( )   and   ( )c c c er r E n= = ΨΨA A vr=

i iA

 (4.13) 

where again  is the expected value with respect to the 

embedded Markov chain.  An averaging function is unbiased if the expected value of the 

averaging function across memory states is equal to the expected value of the associated 

reward distribution.  Second, define a commutative averaging function as one for which 

there exist memory states i  with 

( )( )
2 1

0
( ) ( )

W

e
e

i
E n π

−

=

Ψ = ∑A

12W − 12W − associated but distinct memory states 'i  and 

non-negative constants, , such that  [0,1]iK ∈

 ( ) (1 ) and   ( ') (1 )v i vi r K i r Ki= − =A A +

)

. (4.14) 

While this definition of a commutative averaging function may seem odd, all generalized 

linear combination (GLC, Chapter 2) averaging functions are commutative, and thus 

EWMAs and TWMAs are also commutative.  The key point is that commutative 

averaging functions are symmetric about the mean value.  I refer to this as commutative 

since, for a GLC averaging function, the binary sequence corresponding to  is obtained 

by exchanging all of the ones and zeros in the binary sequence corresponding to i .   

'i

With these definitions in hand, we can proceed with the proof.  From Equation 

(4.12), a DELA model will display risk prone behavior if 

 ( )( 1ˆ( ( )),
2e cH n rθ = ΨC A > . (4.15) 

By condition  from Chapter 2, .1C 1
2ˆ ˆ( , )c cr r =C  for a proper choice function, and thus 

with an unbiased averaging function, ( )( ) 1
2ˆ( ( )) ,eE n rcΨ =C A .  Equation (4.15) can then 

be rewritten as   

 ( )( ) ( )( )( ( )) ( ( ))e eH n Eθ = Ψ > ΨC A C A n , (4.16) 

where the second choice function argument has been suppressed.  Note the similarity 

between Equation (4.16) and Jensen’s inequality.  Jensen’s inequality says that, for all 

convex functionsC and random variables , X ( ( )) ( ( ))E X E X≥C C ; Jensen’s inequality 
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expresses a relationship between the arithmetic mean of a function of a random 

variable, , and the function of the arithmetic mean, .  Analogously, we 

can write Equation 

( ( ))E XC ( ( ))E XC

(4.16) as  

 ( ) ( )( ) ( )eH X E X>C C e , (4.17) 

where ( ( ))X n= ΨA  (a function of a random variable is also a random variable).  

Equation (4.17) replaces the arithmetic mean (expected value) on the left hand side of 

Jensen’s inequality with the harmonic mean (expected value) and makes the inequality 

strict.   

 We can think of convexity as being defined by a relationship between the 

arithmetic mean of a function and a function of the arithmetic mean.  Expanding on this 

notion, Niculescu (2003) introduced a generalized notion of convexity, MN convexity.  If 

a continuous function, , is MN convex, then for any random variable ,   C X

 ( ) ( )( ) ( )N X M X≥C C , (4.18) 

where M and are generalized means.  Using Niculescu’s terminology, Equation N (4.17) 

is the condition for strict AH convexity (arithmetic-harmonic).  Thus only strictly AH 

convex choice functions can generate risk prone behavior.  Importantly, the well known 

power means inequality (Bullen, 2003) says that  

 , (4.19) ( ( )) ( ( ))E X H X≥C C

with equality if and only if 1( ) ( )2x x=C C  for all 1 2,x x  in the domain of .  As a result, 

the condition for risk-prone behavior, Equation 

X

(4.16), is stronger than Jensen’s 

inequality, and choice functions satisfying Jensen’s inequality will not necessarily 

produce risk-prone behavior. 

 In the special case when the rewards are equiprobable, p p+ −= , Appendix 2 

proves that all models combining R-concave choice functions with unbiased and 

commutative averaging functions will generate risk averse behavior.  This proof applies 

to the models presented in Keaser et al. (2004), Niv et al. (2002), Bateson and Kacelnik 

(1995), and the last model in March et al. (1996).  Denrell (2005) presents a similar result 

for a general model with an R-affine choice function and generalized linear combination 
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averaging function but deals with continuous reward distributions.  Niv et al. (2002) also 

present a similar result but for a EWMA averaging function and concave choice function. 

 

Forced trials 

 The BRSE, as treated above, presents the agent with a continuously repeated 

sequence of choice trials offering two different options.  However, most experiments 

instead use a block procedure that presents a sequence of forced trials followed by a 

sequence of choice trials.  For example, the startling experiment discussed in Chapter 3 

utilized blocks of 8 forced trials followed by two choice trials.  The introduction of forced 

trials should reduce the impact of the hot stove effect, as the agent will obtain information 

about the variable option independent of its actions on the choice trials.   

 To see how forced trials modify the dynamics, consider an experiment where each 

block consists of only two trials: one forced trial followed by one choice trial.  On each 

forced trial the agent can only sample from the variable option, and on the choice trial 

both options are presented.  In this case, the expected proportion of choices for the 

variable option is  

 ( )( )( ( ))eEθ = ΨC A n , (4.20) 

and with an unbiased averaging function the condition for risk prone behavior is 

equivalent to Jensen’s inequality.  This experiment represents one extreme and the 

experiment with continuous choice trials represents another.  Intermediate experimental 

schedules will produce intermediary behavior and the predicted proportion of choices for 

the variable option, θ , will be bounded 

 ( )( ) ( )( )( ( )), ( ( )),e c eE n r H nθΨ ≥ ≥ ΨC A C A cr  (4.21) 

for these other schedules. 

 In practice, most experimental schedules fall between the two extremes of only 

choice trials and alternating forced/choice trials.  Moreover, the rewards distributions 

from the forced trials are often modified so that the organism experiences the ‘true’ 

reward probabilities in each block (see Chapter 7).  I cannot present analytic results for 
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these more complex experimental designs, but it stands to reason that decreasing the 

number of consecutive choice trials should decrease exhibited risk aversion.  As the 

number of consecutive choice trials increases, the proportion of choices for the variable 

option should decrease. 

 

Discussion 

This chapter showed how the hot stove effect will generate risk aversion for a 

wide class of DELA models confronted by a BRSE with equiprobable rewards.  

Specifically, any DELA model with a proper R-concave choice function and an unbiased 

and commutative averaging function will display risk aversion.  This phenomenon arises 

due to the dynamics of the experiential learning process:  since the agent only gains 

information by choosing the variable option, runs of bad luck have a disproportionate 

impact. 

Experiments with forced trials eliminate this effect by providing the agents with 

information independent of their choices.  As the number of consecutive choice trials 

decreases, the impact of the hot stove effect will also decrease and the proportion of 

choices for the variable option should increase.  This prediction can be tested 

experimentally by varying the number of choice trials in a block and observing the 

impact on risk sensitive preferences.  Moreover, some of the ambiguity in the risk 

sensitive foraging literature could conceivably be due to differences in methodology.  A 

meta-analysis of published experiments examining the relationship between risk aversion 

and the number of consecutive choice trials in a block might be useful in this respect.  If 

organisms use something like a DELA model, the magnitude of expressed risk 

preferences will depend on the experimental structure, and experimental results should be 

reevaluated in light of this finding. 

If a model, faced with continuous choice trials, is to generate genuinely risk-prone 

behavior, it must violate one of the assumptions used to prove the hot stove effect.  The 

next chapter presents a DELA model that can generate risk prone behavior.  This model 

is able to do so by using a biased and non-commutative averaging function.
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Chapter 6  A risk prone model 

 
 Couvillon and Bitterman (1991) introduced a simple model for how honeybees 

make choices.  Inspired by EWMA type models from mathematical psychology, this 

model is equivalent to a DELA model, albeit one that violates some of the assumptions in 

the previous chapter.  Importantly, this model can, with appropriate parameter settings, 

generate genuinely risk-prone behavior, largely as a result of its novel averaging function.  

For most parameter settings the averaging function is not unbiased or commutative, and 

thus this model is not subject to the hot stove effect proof in Chapter 5. 

 Couvillon and Bitterman applied their model to a series of foraging experiments 

with honeybees and found that the model was able to fit the results satisfactorily.  More 

recently, Shapiro (2000) and Shapiro et al. (2001) applied the model to a series of risk 

sensitivity experiments with honeybees and similarly found that the model could fit the 

results well.  All three studies simulated model dynamics on a computer and obtained the 

best fitting parameters using a factorial search procedure. 

 In this chapter, I will derive some analytic results for the Couvillon and Bitterman 

(CB) model and discuss how this model can generate risk prone behavior.  To derive 

these results, I will treat the model dynamics as an iterated function system with 

probabilities (Barnsley, 1988).  The next section discusses the risk sensitivity 

experiments to which the CB model has been applied, and the following section presents 

the CB model.  Finally I will introduce the iterated function system formalism and use it 

to derive some formulas for computing model predictions.  

 

The experiments 

 The experiments examined in Shapiro (2000) and Shapiro et al. (2001) are mainly 

modified versions of the BRSE (Table 6.1).  Without going into the details of the 

experimental protocol, it suffices to say that the experiments utilized a discrete trials 

procedure presenting bumblebees with a choice between two foraging options providing 
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 Table 6.1  Reward schedules in each Honeybee experiment.  

different nectar rewards with different distributions.  The nectar distributions were 

associated with two different scents, and the bumblebees learned to associate the scents 

with their respective distributions.  All of the experiments in Shapiro (2000) and all but 

two from Shapiro et al. (2001) utilized a block structure with a single choice trial 

followed by a single forced trial.  The option that was not chosen on the choice trial was 

presented on the forced trial, ensuring that the bee received one sample from each food 

source in each block.  Two of these experiments (2001-1, 2001-4B) reversed the reward 

distributions midway through the experiment:  the scent associated with the constant 

reward distribution in the first portion of these experiments was associated with the 

variable distribution in the second portion.  The last experiments from Shapiro et al. 

(2001) did not utilize forced trials, instead presenting an unbroken sequence of 

consecutive choice trials. 

The first 8 experiments come from 
Shapiro (2000), while the last 5 come from Shapiro et al. (2001).  For options providing more than 
one possible reward, both reward values are reported along with the probability of the larger 
reward.  All of the experiments utilized a block structure and the number of blocks is presented for 
each experiment.  Two of the experiments reversed the reward distributions midway through the 
experiment, and the number of blocks pre and post reversal are then reported.  Note that 
experiments 2001-4A and B did not have any forced trials, while all of the other experiments had one 
choice trial followed by one forced trial each block. 
 

Constant Option Variable Option 
Experiment Conc 

(%) 
Amount 

(ml) 
Conc 
(%) 

Amount 
(ml) 

Prob 
Big  

Reverse? # Blocks 

Prelim-C 40 10 20 10 1.00 N 40 
Prelim-A 40 20 40 5 1.00 N 40 
Prelim-P 40 10 40 10,0 0.50 N 40 

Con1 20 10 40,0 10 0.50 N 40 
Con4 15 10 60,0 10 0.25 N 40 
Con5 40 10 60,20 10 0.50 N 40 
Amt1 40 5 40 20,0 0.25 N 40 
Amt2 40 5 40 30,0 0.17 N 40 

2001-1 40 5 40 30,0 0.17 Y 24,48 
2001-2 40 5 40 30,0 0.33 N 40 
2001-3 15 10 60,0 10 0.50 N 40 

2001-4A N 72 
2001-4B 

40 5 40 30,0 0.17 
Y 24,48 
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Figure 6.1- The utility values derived by Shapiro (2000).  The left hand graph shows the 
currency values as a function of the sucrose concentration at two different volumes (Fill = 50 

lμ ).  The right hand graph shows the currency values as a function of nectar volume.  Note 
that all functions are concave.  (Reprinted with permission from Shapiro 2000). 

 Nectar rewards were characterized by a sucrose concentration and a nectar 

volume.  Bees prefer both higher sucrose concentrations and larger volumes, but it is not 

immediately clear how the bees should integrate these relative reward dimensions.  

Shapiro (2000) introduced utility functions to translate the physical rewards into 

subjective rewards (although Shapiro did not phrase it as such).  Rather than try and fit a 

parameterized function, Shapiro introduced individual parameters for each 

concentration/volume combination in the experiments.  Shapiro thus introduced 9 

additional parameters for a total of 13 (9 + two choice function parameters + two 

averaging function parameters).  Shapiro searched the parameter space factorially, and 

obtained plausible values for the utility function (Figure 6.1).  These utility values were 

also used by Shapiro et al. (2001) in their analysis. 

 Note that the utility values derived by Shapiro are concave with respect to both 

sucrose concentration and nectar volume.  Thus we might expect some risk aversion 

based on the non-linear utility function alone.  Indeed, in all of the experiments but one a 

preference for the constant option is predicted on the basis of the average utility provided 

alone (Table 6.2).  In the terminology of Chapter 4, this is apparent risk sensitivity.  The 
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Table 6.2  The utility values for each experiment as presented in Shapiro (2000).  For the 
variable option, the mean value of the rewards provided, computed using the utility values, is 
also shown.  If the mean is less than the utility value of the constant option, preference for the 
constant option is expected (these values are in bold).  Also presented is the observed proportion 
of choices for the constant option over the last 4 choice trials in each experiment (these values 
were estimated from the graphs in Shapiro, 2000 and Shapiro et al., 2001).  The asterisks denote 
experiments with reward reversals, and thus the value reported is actually the proportion of 
choices for the option with the currently variable distribution. 
 

Constant Variable 
Experiment 

cr  r+  r−  p+   vr  
Observed θ

Prelim-C 0.7 0.4 0.4 1.00 0.40 0.75 
Prelim-A 0.8 0.5 0.5 1.00 0.50 0.6 
Prelim-P 0.7 0.7 0.0 0.50 0.35 0.7 

Con1 0.4 0.7 0.0 0.50 0.35 0.49 
Con4 0.3 0.7 0.0 0.25 0.18 0.7 
Con5 0.7 0.7 0.4 0.50 0.55 0.6 
Amt1 0.5 0.8 0.0 0.25 0.20 0.6 
Amt2 0.5 0.88 0.0 0.17 0.15 0.75 

2001-1 0.5 0.88 0.0 0.17 0.15 0.1* 
2001-2 0.5 0.88 0.0 0.33 0.29 0.7 
2001-3 0.3 0.7 0.0 0.50 0.35 0.4 

2001-4A* 0.75 0.5 0.88 0.0 0.17 0.15 
2001-4B* 0.35* 

CB model can also generate genuinely risk sensitivity due to the dynamics of the 

averaging function. 

 

The CB model 

 The most unique feature of the CB model is its averaging function.  The model 

utilizes a version of the standard EWMA averaging function but introduces two memory 

coefficients,  and .  When the reward received from an action is larger than the 

current estimate for that action, the memory coefficient 

m+ m−

m+  is used, and when the reward 

received is smaller than the current estimate, the coefficient m−  is used: 

 . (5.1) 
ˆ ˆ(1 ) ( ) ( )    if  ( )  and ( ) ( )

ˆ ˆ( 1) (1 ) ( ) ( )    if  ( )  and ( ) ( )
ˆ ( )                               if  ( )

i i

i i i

i i

m r n m r n a n a r n r n
r n m r n m r n a n a r n r n

r n a n a

+ +

− −

− + = >⎧
⎪+ = − + = <⎨
⎪ ≠⎩

ˆ
i

i
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−In the special case where m m+ = , Equation (5.1) is equivalent to the EWMA averaging 

function (i.e. Equation (2.6)). 

 The CB choice function (presented in Shapiro, 2000) is given by 

 
.5      if   

( , )

.5      if   

k

k

x ys x
x y

x y
x ys x
x y

⎧ − y

y

+ >⎪
+⎪= ⎨

⎪ −
− <⎪ +⎩

C . (5.2) 

This choice function is ratio-based, but it is not proper with the parameter values used in 

the published papers (  ).  With these parameters, the choice function is 

not necessarily confined to[ .  As long as there are only two possible actions, the 

function can be confined to this interval by simply taking 0 or 1 when 

.625, .75s k= =

0,1]

( , )x yC  is less than 

zero or greater than one respectively.  However, this choice function can also be 

approximated fairly well by a modified Boltzmann choice function with 4.586γ =  

(obtained using logistic regression). 

On the BRSE the updating rule for the CB averaging function can be simplified 

asymptotically.  Consider the variable option which provides either a big reward r+  or a 

small reward .  Whatever the starting value for the associated estimator, , the 

value of  will eventually be confined to [

r− ˆ (0)vr

ˆ ( )vr n , ]r r− +  after enough samples from the 

variable option.  As a result, it will eventually hold that ˆ ( )vr r n r− +≤ ≤  for large enough 

.  Thus asymptotically the CB averaging function simplifies to  n

 
ˆ(1 ) ( )    if  ( )  and ( )

ˆ ˆ( 1) (1 ) ( )    if  ( )  and ( )
ˆ ( )                           if  ( )

v v

v v v

v v

m r m r n a n a r n r
r n m r m r n a n a r n r

r n a n a

+ + + +

− − − −

− + =⎧
⎪+ = − + = =⎨
⎪ ≠⎩

=
. (5.3) 

Unlike in Equation (5.1), here each memory coefficient is always associated with the 

same reward independent of the current value of the estimator.   

 In order to analyze the risk sensitive behavior of this model using the results from 

Chapter 5, we need to be able to compute the asymptotic distribution of the estimator, 

.  To do so, I will need some formalism and results from iterated function systems. ˆ ( )vr n
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Iterated function systems 

 An iterated function system (IFS) is a dynamical system defined by a set of 

functions that map a metric space to itself and  associated probabilities that define 

the probability of applying each map (Barnsley, 1987).  The evolution of the system is 

determined by random application of the different maps, and proceeds in discrete time 

steps.  Let  be a compact metric space and let 

N N

X : ( 1,..., )if X X i N→ =  be functions 

acting on the metric space.  Associated with each function is a probability, 

( 1,..., )ip i = N ; in general these probabilities can depend on the current state of the 

system, in which case they are functions .  If the probabilities depend on 

the current state, the IFS has place dependent probabilities, otherwise the probabilities are 

place independent.  The IFS is defined by the set {

: [0,1]ip X →

, , , 1,..., }i iX f p i N= . 

If the mapping functions, if , are contractive mappings, the IFS is called 

hyperbolic.  The following discussion will deal exclusively with contractive affine maps 

acting on the positive real numbers +\ .  Thus we will only be considering functions 

 of the form :if + →\ \ +

i ( )i if x b m x= + , (5.4) 

where and  are constants associated with each map.  Contractive affine 

functions have attractive fixed points, 

0ib ≥ 0 1im≤ <

ix� , where ( )
1

i
i i i

i

bx f x
m

= =
−

� � .  For any given set of 

affine transformations, ( 1,..., )if i = N , there will exist two transformations min max,f f  with 

associated fixed points min max,x x� �  such that min maxix x x≤ ≤� � �  for all i .  Given any initial 

starting position  this IFS will eventually end up confined to the region (0)x +∈\

min max[ , ]x x  and will never leave.   

 For any hyperbolic IFS such as the one above, there are several well established 

results (see Barnsley, 1993 and Slomczynski et al. 2000 for reviews).  Most importantly, 
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there exists a unique invariant probability measure μ  corresponding to the asymptotic 

distribution for the system.  This distribution is attractive, and the system will converge to 

this distribution independent of the starting state of the system.  In order to compute the 

asymptotic expected value of a continuous function  on an IFS, the function must be 

integrated over this invariant measure: 

( )g x

 ( )( ) ( ) ( )
X

E g x g x d xμ= ∫ . (5.5) 

This integral can be computed in at least two different ways.  The random iteration 

algorithm (Barnsley, 1993) chooses some starting value for the state of the system, 

0x X∈ , and then generates a random sequence of values from the IFS, 

.  The integral in Equation 1 0 2{ , ,..., }nz x z z= (5.5) is then equivalent to  

 
1

1( ) ( ) ( )lim
n

iX n i

g x d x g z
n

μ
→∞ =

= ∑∫ . (5.6) 

Thus the asymptotic expected value of the function can be computed by simply 

generating a sequence of values from the IFS and computing the mean of the function 

over the sequence.  Alternatively, the deterministic algorithm (Barnsley, 1993; Hepting et 

al., 1991; Edalat, 1996) computes the exact distribution explicitly on each step by 

summing over all possible states for the system.  Given an initial state, 0x X∈ , after  

steps there are possible states for the system (  possible operators on each step).  

Expected values can be computed by summing over all permutations of these operators 

and taking the limit: 

n

nN N

 , (5.7) ( )1 1

1 2

2 0
, ,... 1

( ) ( ) ... ( ) ...lim n

n

N

i i i i i iX n i i i

g x d x g f f f x p p pμ
→∞ =

= ∑∫ 2 n

where the sum is taken over all permutations of the operators.  Note that Equation (5.7) 

justifies the finite memory approximation to recursive averaging functions introduced in 

Chapter 2 and used in the proof of the hot stove effect. 
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c

The CB model as an IFS 

 In general, the CB model defines an IFS with place dependent probabilities, but 

asymptotically the probabilities can be treated as place-independent.  The estimator for 

the constant side converges asymptotically to the value of the reward delivered, 

, so we can focus on the dynamics of the estimator for the variable option, 

.  Different memory coefficients are used depending on the relationship between the 

current value of this estimator and the value of the reward received.  Each memory 

coefficient and reward combination represents a different mapping function for the 

associated IFS.  These different combinations are shown in 

ˆ ( )cr n r→

ˆ ( )vr n

Figure 6.2; there are four 

possible combinations and thus four maps, if .  The probability of each of the different 

maps depends on the current state of the system, however, and these probabilities can go 

to zero. 

 As discussed above, we know the system will eventually enter the range [ , ]r r− +  

and never leave.  In this range, there are only two possible maps, 

 
ˆ ˆ( ) (1 )
ˆ( ) (1 )
v

v v̂

vf r m r m r
f r m r m
− − −

r
−

+ + + +

= − +
= − +

, (5.8) 

and the probability of each map is equal to the probability of receiving the associated 

reward:  ,p p+ − .  Thus the asymptotic dynamics for this system are given by an IFS with 

place independent probabilities defined as {{ }[ , ]; , ; ,r r f f p p− + − + − + . 

 On the BRSE, we are interested in the asymptotic expected proportion of choices 

for the variable option, θ , in the special case where vr rc=  (assuming a linear utility 

function).  From Chapter 5, we know that, when each block of trials has a single choice 

and single forced trial, θ  is equal to the arithmetic mean, ( )ˆ( , )v cE r rC , but when the 

experiment provides uninterrupted choice trials, θ  is equal to the harmonic mean, 

.  In the former case, the expected value is computed as  ( ˆ( , )v cH r rC )

 ( )ˆ ˆ( , ) ( , ) ( )v c v c vX
E r r r r d rμ= ∫C C ˆ . (5.9) 

and in the latter as 
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r− r+

{ , }r m− +

{ , }r m+ +

{ , }r m− −

{ , }r m+ −

{ , }r m− −

{ , }r m+ +

v̂r

Zone: 1 2 3
 

Figure 6.2.  Possible combinations of reward and memory coefficient for the CB model.  Shown as a 
function of the current value of the estimator for the variable option, .  v̂r The arrows show the 
direction which each map will move the system.  In each zone there are two possible maps.  In zone 1 
both maps increase the value of , while in zone 3 both maps decrease the value.  In zone 2, the 
maps move in opposite direction. 

v̂r

 ( ) 1 1ˆ( , ) 11 ˆ( )
ˆ( , )ˆ( , )

v c

vX
v cv c

H r r
d rE r rr r
μ

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫
C

CC

. (5.10) 

These integrals can be computed directly using either the deterministic or random 

iteration algorithm presented in Equations (5.6) and (5.7).  However, we could also 

approximate them naively using .  Appendix 3, proves that ˆ( ( ), )v cE r rC

 ˆ( ) (1 )vE r Mr M r+ −= + −  (5.11) 

where   

 (
( )

)
1
1

1
1

M
p m
p m
− −

+ +

=
−

+
−

. (5.12) 

I will refer to M  as the memory bias.  In the special case of equiprobable rewards, the 

memory bias simplifies to 

 1
11
1

M m
m

−

+

=
−

+
−

. (5.13) 
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As a direct result of Equation (5.13), whenever m m+ −<  it follows that 1
2M > , 

ˆ( )v vE r r r> = c , and hence that 1
2ˆ( ( ), )v cE r r ≥C .  Similarly, the converse is true when 

, and when  we have the unbiased EWMA averaging function with m m+ > − −m m+ =

1
2ˆ( ( ), )v cE r r =C .  Thus a memory bias greater than one half will increase risk prone 

behavior, but a memory bias of less than one half will increase risk averse behavior.   

Choosing m  effectively weights either the big reward or the small reward 

more strongly, leading to a biased estimator.  The CB model can generate risk 

preferences because it explicitly weights one of the two possible rewards more strongly 

than the other.  Weighting the small reward more strongly will lead to risk aversion while 

more weight on the big reward will lead to risk prone behavior.  In their initial paper, CB 

found that m  (i.e. the standard EWMA) provided the best fit to their bumblebee 

data, but the two more recent studies found 

m+ ≠ −

−m+ =

m m+ −< .  Shapiro (2000) reported 

 and Shapiro et al (2001) reported .96, .98m m+ −= = .92, .94m m+ −= =  as the best fitting 

parameterization.  Either parameterization will produce a memory bias of more than one 

half and increase the magnitude of risk prone behavior. 

 On the experiments with one choice and one forced trial per block, there will be 

no hot stove effect.  In this case the CB model generates risk averse behavior due to the 

concave utility function, but the magnitude of the risk aversion is reduced by the biased 

averaging function ( 1
2M > ).  For these experiments, the algorithms presented above can 

be used to compute .  On the lone experiment with repeated choice trials 

and no forced trials (Experiment 2001-4), the hot stove effect will hold, and the harmonic 

mean of the choice function must be computed over the attractive probability measure.  

( ˆ ˆ( , )v cE r rθ = C )

Table 6.3 presents the results from each algorithm on the twelve experiments that did not 

involve a reversal of the reward distributions.  The results from each algorithm are 

similar and provide a reasonable fit to the experimentally observed data.  Note that, at 

least for the parameter values used, the direct and simple computation of  

with Equation 

ˆ( ( ), )v cE r rC

(5.11) is largely equivalent to the two more complex computation methods 



81 
 

 

Table 6.3  Empirical results and CB model predictions for each honeybee experiment.  The 
second column was computed exactly using Equation (5.11).  Column 3 presents the results 
from the deterministic algorithm run with ˆ (0) ( )vr E v̂r=  and up to 18n = .  Column 4 
presents the results from the random iteration algorithm over 100,000 iterations.  Observed 
values were estimated from the published papers, and the model parameters were taken 
from Shapiro et al. (2001): .92, .94, .625, .75m m s k+ −= = = = .  The predictions from 
the three methods are quite similar, at least with the parameter values used here. 
 

Experiment Observed ˆ( ( ), )v cE r rC  Deterministic 
 

Random 
Iteration 

Prelim-C 0.75 0.74 0.74 0.74 
Prelim-A 0.6 0.71 0.71 0.71 
Prelim-P 0.7 0.74 0.74 0.74 

Con1 0.49 0.5 0.51 0.51 
Con4 0.7 0.66 0.66 0.66 
Con5 0.6 0.61 0.61 0.61 
Amt1 0.6 0.78 0.78 0.78 
Amt2 0.75 0.85 0.85 0.85 

2001-2 0.7 0.67 0.67 0.67 
2001-3 0.4 0.35 0.37 0.37 

0.85 0.84 2001-4A 0.75 0.85 

in Equations (5.6) and (5.7).  More exact approximations can be computed using higher 

order moments of Ĵr .  Appendix 3 also presents a formula for the variance of Ĵr , and this 

value could be used in a second order Taylor series to approximate . ( )ˆ ˆ( , )v cE r rθ = C

These results suggest some simpler methods for fitting model parameters:  rather 

than simulate the model or use the (eventually) exact computation algorithms, quickly 

compute predictions using moments of the asymptotic distribution.  The results of this 

faster search can then be used to narrow the parameter space for more intensive 

exploration using simulation or exact computation methods.  Of course, this approach 

will only work if the experiments provide asymptotic data (i.e. the experiments are long 

enough and the choice proportions reach an asymptote).  In such cases, however, the 

approach should be quite useful since computing the exact distribution over the course of 

the learning process is more computationally involved 
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+

Short term model predictions 

 Each of the published papers focused the acquisition of preferences over the 

course of an experiment and not on the asymptotic preferences.  In fitting the model, the 

authors simulated the entire experimental run and compared the predicted and observed 

choice proportions at fixed intervals throughout the experimental period.  In order to 

predict the proportion of choices throughout an experiment (or deal with reward 

distribution reversals), the dynamics of the estimator for the constant option must also be 

considered.  To derive predictions for the short term dynamics, the system can be treated 

as an IFS with place dependent probabilities defined on a bivariate metric space, 

, corresponding to the possible values for the estimators  and .  

The experimental structure of one choice trial followed by one forced trial ensures that 

each estimator is updated exactly once in each block.  There are two possible maps for 

 corresponding to 

X += ×\ \ ˆ ( )vr n ˆ ( )cr n

ˆ ( )cr n ˆ ( )c cr n r<  and .  In combination with the four possible 

maps for  (as depicted in Figure 2), there are 8 possible maps, , in 

all. 

ˆ ( )cr n r> c

ˆ ( )vr n ˆ ˆ ˆ ˆ( , ) ( , )c v i c vr r f r r=

 Given some initial state ( )ˆ ˆ(0), (0)c vr r , the deterministic algorithm can be used to 

compute the exact distribution for the system on each trial.  Similarly, the deterministic 

algorithm can be used to compute the exact distribution given any initial probability 

kernel on .  The number of computations increases quickly as a function of the 

number of trials ( ), and exact computation quickly becomes infeasible.  

However, these computations can be simplified by imposing a discrete grid on the state 

space and approximating the distribution.  Given a computed distribution on each trial, 

more precise model selection and inferential methods become feasible. 

ˆ ˆ( , )c vr r

(2 )nO≥

 

Discussion 

The Couvillon-Bitterman model is one of the few published models that can 

generate genuinely risk prone behavior.  This ability is due to its novel averaging 
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function which is neither unbiased nor commutative.  Depending on the parameter values 

used, the CB averaging function can generate either risk-prone or risk-averse behavior.  

In the former case the averaging function places more weight on the larger reward 

(memory bias ) and in the latter it weights the smaller reward more strongly 

(memory bias ), thus biasing the estimates.  This model is able to fit the data from 

the honeybee experiments quite well. 

0.5>

0.5<

Although the honeybees on the whole display risk averse behavior, the averaging 

function parameter values that fit the honeybee data best actually decrease the magnitude 

of the risk aversion (memory bias for the parameters used is ).  The risk aversion is 

due to the non-linear utility function; with a linear utility function the CB model would 

actually be risk prone using the published parameter values. 

0.5>

While not explored here, the possibility remains that a more traditional averaging 

function could fit the honeybee foraging data equally if different utility and choice 

functions were used.  The next chapter, presents a more formal model selection using a 

larger set of data from some foraging experiments with starlings.
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Chapter 7 Starling experiments 

 
 Bateson and Kacelnik, together and with other authors, have conducted an 

extensive series of bird in a box experiments with starlings.  Many of these experiments 

used similar methodologies but differed in experimental details.  Several experiments 

(BK, 1995a; BK, 1996; BK, 1997) utilized the titration procedure from Chapter 3, and 

presented the birds with a transient environment.  Other experiments did not titrate the 

reward distributions (BK, 1995b; Schuck-Paim & Kacelnik, 2002; Bateson, 2002), and 

thus presented stationary environments.  This chapter evaluates the performance of some 

simple DELA models, using the published data from these two sets of experiments. 

 Unfortunately, I do not have access to the full data sets from these experiments 

and must make do with the published summary statistics.  This fact limits the scope of 

any possible model selection.  Thus my goal here is not to find a ‘best’ model but instead 

to explore the behavior of some simple 2 and 3 parameter models in order to diagnose 

discrepancies between model predictions and the observed results.  The main emergent 

pattern is that it is difficult for the same choice function to fit the data from the transient 

and stationary experiments simultaneously.  This result, which was also discussed in 

Chapter 3, suggests a major possible shortcoming of DELA models. 

 

The experiments 

 All of the experiments utilized the same basic bird in a box procedure presenting a 

choice between two foraging options providing food rewards.  Rewards were 

characterized by both a waiting time and a reward size, and there were two types of 

experiments.  The first type of experiment offered a choice between a high variance 

option and a constant or low variance option, with variability in either the waiting times 

or the reward sizes but not both.  The response variable from these experiments was a 

proportion (proportion of choices for the more variable option), so I will refer to them as 

P-experiments (Table 7.1).  The other type of experiments, the T-experiments (Table 
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7.2), offered a choice between a standard option and an adjusting option and used a 

titration procedure to modify the reward provided by the adjusting option.  Either the 

reward size or the waiting time could be titrated, and the response variable was the 

average value of the titrating dimension.  The P-experiments presented a stationary 

environment, and the T-experiments presented a transient one. 

 Both types of experiments were organized into blocks of forced and choice trials, 

but the relative number of forced and choice trials varied between experiments.  In all 

experiments, each option was presented on exactly half of the forced trial in each block, 

ensuring that the birds received equal exposure to each option, but the order of 

presentation was chosen randomly.  Similarly, all of the experiments structured the forced 

trials so that the birds were exposed to the ‘true’ reward distributions in each block:  each 

possible reward was presented with a frequency proportional to its probability.  For 

example, in experiment T-Time2 the standard option provided two equiprobable rewards, 

there were 8 forced trials per block, and on 4 of these forced trials the variable option was 

presented (Figure 7.1).  On exactly two of those 4 forced trials, the bird received a big 

reward and on the other two the bird received a small reward, with the order of 

presentation chosen randomly.  This method ensured that the birds experienced the ‘true’ 

distributions in each block but also reduced the effective variance in the rewards from the 

variable option, eliminating the possibility of a block presenting all/none big rewards. 

 In lieu of access to the original experimental data, I use the reported summary 

statistics as response variables.  In the P-experiments (Table 7.3) the response variable 

was either the mean or median proportion of choices for the variable option computed 

across all the birds in the experiment.  Similarly, in the T-experiments (Table 7.4), the 

response variable was the mean or median value of the adjusting option across all birds.  

Note that the response variables were not always reported numerically in the text, in 

which cases I estimated the values from published graphs. 
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 Table 7.1  Characteristics of the12 P-experiments.  Side V is the high variance option and provides a 
big reward, , with  probability, 'r+ p+ , and a small reward, 'r− with probability, 1 p+− ; is the w
waiting time and  is the reward size.  Side C is the low variance or constant option.   For the block s
structure, an F denotes a forced trial and a C denotes a choice trial.  In the Bateson 2002 experiments, 
each food item was a .045 g starling pellet, while in all others each reward was ~.012g of turkey starter 
crumbs.  The Bateson 2002 experiments had 8 birds per experiment, while all others used 6 birds. 
 

Side V Side C 
'r−  'r+  'r−  'r+  Source Experiment

w  s  s  
p+  

w  w s w s  
p+  

Block    
Structure

P_Amt1 8 F- 1 C 
P_Amt1_B 

20 3 20 7 0.50 20 5 1 
1C 

P_Time1 8 F- 1 C 
B & K 1995B 

P_Time1_B 
60.5 5 2.5 5 0.50

  
20 5 1 

1C 
P_Time2 12 5 28 5 0.50 20 5 1 4 F- 1C 
P_Time3 4 5 36 5 0.50

 
20 5 1 4 F- 1C SP & K 2002 

P_Time4 4 5 36 5 0.50 28 5 12 5 0.50 4 F- 1C 
P_Amt2 5 2 5 8 0.33 5 4 1 18 F- 18 C
P_Amt3 5 1 5 10 0.33

  
5 4 1 18 F- 18 CB 2002 

P_Amt4 5 1 5 10 0.33 5 2 5 8 0.33 18 F- 18 C
P_RF_1 18 1 3 1 0.50 18 1 1 2 F- 1 C B & K 1997
P_RY_1 18 

 
1 3 1 0.50 18 1 1 2 F- 1 C 

 
Table 7.2  Characteristics of the 12 T experiments.  Side S is the standard side and side J is the 
adjusting side.  The dimension with the * is the titrating dimension, and the value shown is the value 
at the start of the titrations.  Note that in the experiments with **, the waiting time started with the 
ending value from the previous experiment.  All of these experiments used 6 birds, and each food item 
represented ~.012g of turkey crumb. 
 

Side S Side J 
'r−  'r+  Source Experiment

w  s  w  s  
p+ w  s  

Block 
Structure 

T_Amt1 5 3 1 5 9* 8 F- 2 C B & K 
1995A T_Amt2   5 9 1 5 3* 8 F- 2 C 

T_Amt3 20 5 1 20 15* 8 F- 2 C 
T_Time1 

 
20 5 1 5* 5 8 F- 2 C 

T_Time2 60.5 5 2.5 5 0.50 20* 5 8 F- 2 C 
B & K 1996 

T_Time3 20 2 5 2 0.50 20 2* 8 F- 2 C 
T_RF_2 18 1 3 1 0.50 18* 1 2 F- 1 C 
T_RF_3 18 1 3 1 0.50 ** 1 2 F- 1 C 
T_RF_4 18 2 3 2 0.50 ** 2 2 F- 1 C 
T_RY_2 18 1 3 1 0.50 18* 1 2 F- 1 C 
T_RY_3 18 1 3 1 0.50 ** 1 2 F- 1 C 

B & K 1997 

T_RY_4 18 2 3 2 0.50 ** 2 2 F- 1 C 



87 
 

 

 Each experiment was divided into three parts.  A pre-training period exposed the 

birds to the experimental apparatus and some representative reward values.  After pre-

training, the birds were exposed to the actual reward schedules as summarized in Table 

7.1 and Table 7.2.  However, since the authors were interested in the asymptotic 

preferences, the data from the first few blocks was discarded.  Thus each experiment had 

a brief training period followed by a testing period.  The birds were exposed to the actual 

reward schedules in both periods, but only the data from the testing phase was used to 

derive the summary statistics presented in Table 7.3 and Table 7.4.  The number of data 

points used to compute the summary statistics, , differed between experiments.  In the 

P- experiments,  was equivalent to the number of choice trials in the testing phase of 

the experiment.  In the T-experiments  denoted the number of possible titrations during 

the testing phase. 

N

N

N

+

+

-

-

8 forced trials, 4 of each 
type on each key.  The 
red key represents the 
standard option that 
provides either a small 
or a large reward 
(indicated by a + or -).  
Note that there are 
always 2 + and 2 –
rewards.

2 choice trials

 
 
Figure 7.1.  A possible block of trials.  The experimental protocol from experiment T_Time2 
is shown, but all of the experiments used similar structures.  (After Bateson and Kacelnik, 
1996). 
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Table 7.3  Results from the P-experiments.  In all cases, the response variable is the 
proportion of choices for the more variable option.  denotes the number of choice trials in N
the testing phase of the experiment.  In the comments, RP stands for risk prone and RA for 
risk averse. 
 

Source Experiment Statistic Observed
value N Comments 

P_Amt1 mean 0.54 216 slightly RP 

P_Amt1_B mean 0.475 216 slightly RA,  
Hot stove Effect 

P_Time1 mean 0.98 216 RP 

B & K 
1995B 

P_Time1_B mean 0.97 216 RP 
P_Time2 mean 0.66 432 RP 
P_Time3 mean 0.89 432 RP SP & K 

2002 
P_Time4 mean 0.85 432 RP 
P_Amt2 median 0.53 720 slightly RP 
P_Amt3 median 0.48 720 slightly RA B 2002 
P_Amt4 median 0.4 720 RA 
P_RF_1 median 0.98 180 RP B & K 1997 
P_RY_1 median 0.96 180 RP 

 
Table 7.4  Results from the T-experiments.  The response variable is the average value of the 
titrating options.  denotes the number of blocks in the testing phase.  In the comments, 
TB stands for titration bias.  Note that in the BK 1997 experiments, the titrating value is 
larger in the risk-free treatments than in the risky treatments, suggesting that the birds 
preferred the risky option. 

N

 

Source Experiment Statistic Observed
value N Comments 

T_Amt1 mean 3.97 2247 TB B & K 
1995A T_Amt2 mean 12.1 1613 TB 

T_Amt3 mean 5.22 600 small TB 
T_Time1 mean 21.77 600 small TB 
T_Time2 mean 5.6 600  

B & K 1996 

T_Time3 mean 5.25** 600  
T_RF_2 median 7.56 1620
T_RF_3 median 7.5 60 
T_RF_4 median 7 60 
T_RY_2 median 6.34 1620

Titrating 
waiting time is B & K 1997 

T_RY_3 median 5.2 60 
T_RY_4 median 4.9 60 

Larger in the 
RF treatment 
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There are some consistent patterns in the results across experiments.  The P-

experiments show clear risk preference with respect to variability in waiting time and a 

weaker tendency towards risk aversion with respect to variability in amount.  The results 

from the T-experiments are slightly more complicated, but there is evidence of a titration 

bias in several of the experiments.  Many of the experiments had unique features, so I 

now briefly summarize the procedures from each publication.  See the individual 

publications for further details. 

Bateson and Kacelnik 1995A 

 These are the titration experiments discussed in Chapter 3.  Only the titrating 

(stage 2) results are considered here.  Experiment T_Amt1 used the smaller 3 pellet 

standard, while T_Amt2 used the larger standard.  In both experiments the mean value of 

the adjusting option displayed a titration bias and was larger than the value of the 

standard (Table 7.4).  The CV of the adjusting option was similar in both experiments but 

slightly larger in T_Amt2. 

Bateson and Kacelnik 1995B 

 This paper presented four different versions of the BRSE.  Two of the 

experiments, Amt1 and Amt1_B, introduced variability into the reward sizes, while the 

other two, Time1 and Time1_B, introduced variability into the waiting times.  For Amt1 

and Time1, each block consisted of 4 forced trials followed by one choice trial.  On the 

other hand, experiments Amt1_B and Time1_B eliminated the forced trials and presented 

uninterrupted choice trials instead.  These later two experiments should thus be subject to 

the hot stove effect.  

 However, there was little observable difference in the results (Table 7.3).  The 

proportion of choices for the variable option was only marginally lower in Amount1_B 

than in Amount1, and there was even less difference in the choice probabilities between 

Time1 and Time1_B.  Although consistent with the hot stove effect, these results suggest 

that it had little impact on the Starling’s choices in this experiment. 
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Bateson and Kacelnik 1996 

These experiments employed the same titration procedure as in BK 1995, but in some of 

the experiments the standard option provided rewards stochastically.  Experiment 

T_Amt3 was functionally equivalent to the experiments in BK 1995 but used different 

reward sizes and waiting times.  Experiment T_Time1 was also quite similar, but here the 

waiting time was adjusted and the reward amount held constant.  In Experiments 

T_Time2 and T_Time3, the standard option provided rewards stochastically with the 

same amount but either a small or a large waiting time.  In T_Time2, the waiting time on 

the adjusting option was titrated, while in T_Time3 the reward amount was titrated. 

 The first two experiments from this paper showed a titration bias but the 

magnitude was quite small.  The presence of a titration bias in the other two experiments 

depends on the utility function used, so it is not obvious whether these data display a 

titration bias. 

Bateson and Kacelnik 1997 

 The experiments in this paper were unique in that they attempted to gauge the 

source of risk sensitivity.  Specifically, these experiments were designed to test whether 

variability or uncertainty was the key factor.  In each treatment a titrating option provided 

rewards with no variability, but the waiting time to the reward was titrated throughout the 

experiment.  The alternative option provided rewards with variability, but with different 

amounts of uncertainty. The risk free (RF) treatment delivered either a large or a small 

reward but always delivered them in the same repetitive sequence (i.e. + − ).  The 

risky (RY) treatment delivered the same two rewards but the sequences were quasi-

random (for example  or 

+ −+ −

+ −−++ − −+ −−+ − ). 

 Each trial in this experiment was composed of a sequence of 6 sub-trials.  Thus 

upon making a choice on a choice trial, the organism initiated a sequence of 6 sub-trials 

and received six rewards in a row.  On the forced trials, the source of the rewards was 

determined by the experimenter, and the birds had one forced trial (6 sub trials) from 

each option in each block.  There were 3 trials per block, two forced followed by two 
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choice, so the bird received 18 samples in each block (18 sub-trials): 6 from each of the 

options on the forced trials, and 6 from an option of its own choosing.   

 The experiment took place over 4 stages.  In stage one (Experiments P_RF_1, and 

P_RY_2), the values of the adjusting waiting time was held constant at a large value until 

the starlings developed a preference for the standard option.  The response variable in this 

stage was thus a probability or preference, so the results from this stage are included with 

the P-experiments.  The remaining stages are classified as T-experiments.  In stage 2 the 

titrations began, and the value of the adjusting option was changed after each block.  If 

the adjusting option was chosen on the choice trial, the adjusting waiting time was 

increased by one second, while if the standard option was chosen, the adjusting waiting 

time was decreased by one second.  Stage 3 began using the final titration value from 

stage 2, but now the adjusting option was only titrated at the end of each session (30 

blocks).  If, in a given block, the adjusting option was chosen significantly more often 

than the standard, as indicated by a two-tailed binomial test (p<0.05), the value of the 

adjusting time was increased by one unit, otherwise it was decreased.  Finally, Stage 4 

used the same titration rule as in stage 3 but the reward amount was increased from one 

pellet to two. 

 In Stage 1, the birds developed strong preferences under both treatments (Table 

7.3).  The results from the various titration stages were quite similar within treatments 

(Table 7.4), but the titration value in stage 2 was slightly larger than in stages 3 or 4.  

However, there was a difference between treatments, as the mean value of the titrating 

time was significantly lower in the risky than in the risk free group.  Bateson and 

Kacelnik interpreted this result as suggesting that the birds preferred the risky option to 

the risk free option, since a longer waiting time was needed to make the birds indifferent 

between the risk free standard option and the titrating option.  Surprisingly, the birds 

seemed to prefer an unpredictable reward to a predictable one. 

Bateson and Kacelnik (2002) 

 These P-experiments introduced variability into the reward size, and held the 

waiting time constant for all options.  There were three possible reward distributions:  a 
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constant reward distribution always providing the same reward, a high variance 

distribution, and a low variance distribution.  The three experiments from this paper 

explore all three pair-wise combinations of these distributions (Const., Low; Const., 

High; Low; High); note that the last experiment (P_Amt4) provides a choice between two 

variable options. 

 Surprisingly, the birds seem to prefer the intermediate level of variability the 

most.  The birds preferred the low to the constant option (P_Amt2), the constant to the 

high option (P_Amt3), and the low to the high option (P_Amt4), as shown in Table 7.3.  

While the preferences in the former two experiments were slight, the preference was 

significant in the third.  This intermediate level of preference was borne out in an 

additional experiment (not discussed here) that presented all three options 

simultaneously.   

 Note that this experiment differed from the others in several important respects.  

First of all, more birds (8) were used in this experiment and the reward units were 

different:  this experiment offered .045 g starling pellets as rewards, while the others 

provided .012g of turkey starter crumbs.  Second, these experiments utilized many 

consecutive choice trials per block (18 forced trials followed by 18 choice trials), while 

most of the other experiments had at most 2 consecutive choice trials.  As a result, the hot 

stove effect should have more impact in these experiments. 

Schuck-Paim and Kacelnik (2002) 

 As with the Bateson (2002) experiments, these experiments utilized three possible 

reward distributions (a constant, a low variance, and a high variance) and tested all 3 

pair-wise combinations, but here variability was introduced into the waiting times.  The 

birds were strongly risk prone in all three experiments, but showed no evidence of the 

intermediate risk preference displayed in Bateson (2002). 
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Simulating the experiments 

Although the previous chapters present analytic results that could be used to 

derive model predictions analytically on several of the experiments, I instead chose to 

simulate all the experiments.  By using simulations on all experiments, the methodology 

is standardized and results can still be presented for models or experiments that are not 

amenable to an analytic treatment.  The simulations attempt to replicate the experimental 

structure in all aspects relevant to the models under study.  Thus in each experiment I 

simulated the published number of pre-training, training, and testing trials exactly.  

Several aspects of the experimental procedures, such as the inter-trial interval or the 

number of blocks per day are ignored completely, since they do not impact the dynamics 

of the tested models. 

A simple Monte-Carlo method was used to explore the parameter space of each 

model.  Uniform distributions were defined for each parameter, and parameterizations 

were generated by sampling independently from these distributions.  On each experiment, 

the predictions for a given parameterization were derived by simulating an experimental 

run for the appropriate number of replicate birds.  Each bird was thus assumed to have 

exactly the same parameter values across all of the experiments.  This potentially 

represents a major simplification, as individual birds might express different behavior.  

However, in order to add some variability to the parameterizations across birds, prior 

distributions on the parameter values, requiring additional parameters to define, would be 

needed.  Thus in the interest of simplicity, the simulations assume that all the birds are 

identical. 

 

Evaluating model fit 

 A metric is needed to evaluate model performance, and the metric used can have 

substantial ramifications for the resulting analysis.  In the current context, the choice of 

metric is complicated by the diverse nature of the response variables.  The response 

variables in the P-experiments are probabilities bounded in [0 , while in the T-,1]
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experiments they range from approximately 4-20, and so are an order of magnitude 

larger.  Some traditional metrics, such as the sum of squares, will be biased in the face of 

this divergence, since the maximum possible squared error in a P-experiment is 1, while 

in a T-experiment it is functionally unbounded.  Thus a sum of squares metric will be 

more sensitive to model prediction errors in the T-experiments than in the P-experiments. 

Consider instead a metric based on the negative log-likelihood.  Rather than 

compute the empirical likelihood for a model through simulation, I will assume simple 

distributions for the response variables.  The P-experiments naturally imply a binomial 

distribution with success probability equal to the observed proportion of choices for the 

variable option, iθ , based on a sample size of , the number of choice trials in the 

testing phase of experiment i .  With this assumption, and letting 

iN

îθ  be the choice 

proportion predicted by a given model, the negative log likelihood for P-experiment i  is 

given by: 

 ( ) ( ) ( )( )ˆln 1 ln 1P
i i i i i iLL N ˆθ θ θ θ= + − − . (6.1) 

For the titration experiments, a normal distribution with parameters 2( , )i iμ σ  and a mean 

equal to the average value of the adjusting option, i Jr iμ = , is an obvious choice.  Without 

access to the data, exact measures of variance can’t be computed, but based on the 

evidence discussed in Chapter 3, I’ll assume a constant coefficient of variation, with the 

variance proportional to the square of the mean, 2
i

2
iσ μ∝ .  The negative log-likelihood 

on T-experiment i  is then proportional to 

 ( )2

2

ˆi iT
i i

i

LL N
μ μ
μ
−

= , (6.2) 

where iμ
�  is the predicted mean value for the adjusting option.  Effectively Equation (6.2) 

is the weighted squared error of the model’s prediction on experiment i .  Note that, for 

both sets of experiments these assumptions are somewhat arbitrary; a more detailed 

analysis of the data could help determine whether these distributions are appropriate. 

 The preceding equations present formulas for computing the negative log 

likelihood on individual experiments.  To evaluate model performance on the entire set of 
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experiments these individual measures must be combined.  I used three statistics to 

summarize model fit.  The first is the total negative log likelihood on the probability 

experiments: 

 
probability
experiments

P P
iLL LL= ∑ . (6.3) 

Similarly, the total negative log likelihood on the titration experiments is 

 
titration
experiments

T
iLL LL= T∑ , (6.4) 

and the overall negative log likelihood is the sum of these two values 

 TLL LL LLP= + . (6.5) 

The statistic  summarizes model performance on the T-experiments, TLL PLL  

summarizes model performance on the P-experiments, and summarizes model 

performance on the entire set of experiments.  For each statistic, smaller is better, and we 

want to minimize each of these summary statistics.  Note that these statistics are relative 

measures of model performance and mean little in isolation; instead they are useful for 

comparing the performance of different models. 

LL

 

Models and results 

There are many possible combinations of utility functions, choice functions, and 

averaging functions.  However, many of these combinations are functionally equivalent, 

and the lack of data obscures the model selection:  deciding between these similar 

stochastic models becomes somewhat arbitrary.  So here I present results for some simple 

models in an attempt to diagnose model deficiencies.  Table 7.5 summarizes all of the 

different functions that are explored in the following simulations.  A preliminary analysis 

indicated that there was little difference between results obtained using a TWMA and 

those obtained using a EWMA, so no models with TWMAs are presented here.  Model 

characteristics are summarized by a three part code denoting the different function used 

in the model.  For example, the model N-EW-MB uses the null utility function, a EWMA 

averaging function, and a modified Boltzmann choice function.  
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Table 7.5  The different functions used in the model selection. 
 

 Name Code Function Num Par
Currency   ( , )s w =U   

 Null N 
1

s
w+

 0 

Choice   ( , )x y =C   

 Matching M 
x

x y+
 0 

 Boltzmann B ( )1
1

1
y x

eγ
−

+

 1 

 Modified-Boltz MB 1

1

1
y x
y xeγ

⎛ ⎞−
⎜ ⎟+⎝ ⎠+

 1 

Averaging   ˆ( 1)r n + =   
 Exponential-Weighted EW ˆ(1 ) ( ) ( )m r n mr n− +  1 

Perhaps the simplest possible model, in terms of the number of parameters, 

combines the null utility function with a EWMA and a matching choice function (N-EW-

M).  The null utility function, shown in Table 7.5, avoids division by zero but has no free 

parameters, and the matching function also has no free parameters.  With only one 

parameter, the memory coefficient m  from the EWMA, it is easy to explore the 

parameter space for this model.  I conducted 2000 Monte Carlo simulations with  

ranging from 0.2 to 0.99.  

m

Table 7.6 presents the best results for each metric. 

More informative perhaps is a graph of PLL  against  with color indicating the 

value of m  (

TLL

Figure 7.2).  Happily, the best fits in both sets of experiments are obtained 

with similar parameter values.  Moreover, model fit appears to improve as  increases, 

with the best fits for .  Note that, due to the stochastic nature of the models, there 

is some inherent variability in the log likelihood values, and duplicate runs with identical 

parameter values can produce different summary statistics. 

m

.5m >
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Table 7.6  Numerical results.  The best parameterization, as measured by each of the three 
statistics, is shown.  Note how γ  descends for each model as performance improves on the P-
experiments. 
 

  PLL  TLL  LL  m  γ  Tγ  

N-EW-M       

 Best  TLL 228.22 144.47 372.69 0.91   
 Best  LL 228.22 144.47 372.69 0.91   
 Best PLL  190.36 326.69 517.05 0.86   

N-EW-B       

 Best  TLL 300.53 235.72 536.26 0.84 0.41  
 Best  LL 147.87 257.62 405.49 0.98 0.16  
 Best PLL  116.42 346.32 462.74 0.98 0.13  

N-EW-MB       

 Best  TLL 344.97 111.96 456.93 0.99 0.61  
 Best  LL 28.31 247.67 275.98 0.95 0.20  
 Best PLL  12.81 307.92 320.74 0.98 0.16  

N-EW-G       

 Best  TLL 428.56 118.44 547.01 0.67 1.59  
 Best  LL 36.89 239.57 276.46 0.98 0.43  
 Best PLL  11.23 327.04 338.27 0.99 0.36  

N-EW-MBS       

 Best  TLL 283.51 42.72 326.23 0.98 0.47 1.61
 Best  LL 35.79 57.84 93.63 0.99 0.15 1.58

Best PLL  201.97 0.99 0.16  209.52 7.55 1.26

More complex choice functions can substantially improve model fit.  Table 7.6 

also shows results for three other models using different choice functions.  The model 

using the Boltzmann choice function (N-EW-B) was clearly the worst, out performed 

even by the matching choice function (N-EW-M) under two of the three metrics.  

However, the models using the Gaussian (N-EW-G) and the modified Boltzmann (N-

EW-MB) functions fared better, especially on the P-experiments.  Table 7.6 also suggests 

a pattern in the relationship between model fit and the choosiness of the associated choice 

function.  Choosier choice functions (small values of γ ) perform better on the P-
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Figure 7.2  Log-likelihood on theT-experiments vs. log-likelihood on the P-experiments.  On 
each graph, the color denotes the value of one of the free parameters.  Note that on the bottom 
two graphs, smaller values of γ  do well on the P-experiments, while larger values do well on 
the T-experiments. 

experiments, but less choosy choice functions (large values of γ ) are better on the T-

experiments. 

Graphing  against TLL PLL  further substantiates these observations.  Figure 7.2 

presents graphs of the negative log-likelihoods for these three more complex models, 

with the color on the graph indicating the value of γ .  Again, the model with the 

Boltzmann choice function performs much worse than all others, but the Gaussian and 

modified Boltzmann choice functions produce similar results, suggesting that these 

choice functions might be largely equivalent.  Moreover, the change in model 

performance as a function of γ  is quite obvious in both the Gaussian and modified 
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Figure 7.3  Results with two differentγ  values.  The model 
with a modified Boltzmann choice function and two 
parameters Pγ  (shown here as the color) and Tγ (not 
depicted). 

Boltzmann graphs.  Clearly there is tension between the two groups of experiments, and 

choosier choice functions do better on the P-experiments. 

This tension is made clearer by introducing different values for γ  when the 

environment is transient and when it is stationary.  The model N-EW-MBS uses the 

modified Boltzmann choice function but introduces an additional parameter, Tγ , for use 

in the transient T-experiments.  In the portions of the experiments where reward 

distributions are stationary (the pre-training periods and all stages of the P-experiments), 

the parameter γ  is used, while in the transient parts of the experiments (training and 

testing stages in the T-experiments) Tγ  is used.  Over 200,000 simulations, shown in 

Figure 7.3, simultaneous performance on both the P and T experiments is improved 

substantially, as indicated by the  score in LL Table 7.6. 

Despite the relatively good performance of the N-EW-MBS model, it cannot 

match some important characteristics of the data.  Figure 7.4 shows the T-experiment 

results from 500 simulations of the N-EW-MBS parameterization with the best  value 

(taken from 

LL

Table 7.6).  By no means does this model match all of the significant results 
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Figure 7.4 Predictions from the best N-EW-MBS model 
parameterization on the T-experiments.  Results from 500 
simulations are shown. 

from the data; it never produces the correct value on the second experiment (T_Amt2) 

and only rarely matches the results from the last two experiments (T_RY_3, T_RY_4). 

Model performance could perhaps be improved by using other averaging or utility 

functions.  However, a cursory analysis suggested that differentiating between these 

models was difficult with the data on hand, and no such analysis will be attempted here.  

Suffice it to say that the N-EW-MBS model is superior to all the other models presented 

in Table 7.6.  The discrepancy in γ  values needed to fit the T and P experiments suggests 

a potential failure of the simple DELA models. 

Discussion 

The poor performance of the Boltzmann choice function relative to the others can 

be taken as more evidence against difference-based choice functions.  The difference-

based Boltzmann choice function, with one free parameter, on the whole provides a 

worse fit to the data than do any of the ratio-based choice functions, even the matching 

choice function with no free parameters.  These results suggest strongly that the starlings 

are making choices by taking ratios, not differences.  Although none of the single 

parameter choice functions performed well simultaneously on both sets of experiments, 

the modified Boltzmann and Gaussian functions emerged as the best of the group.  The 
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results from the modified Boltzmann were marginally better than those from the 

Gaussian, but on the whole the functions behaved quite similarly. 

The modified Boltzmann choice function with two parameters, one for each type 

of experiment, produced the best results.  Of course this is an inelegant and unrealistic 

solution.  If the bird is to use different parameters in different types of environments, it 

must have a mechanism for detecting the difference between the environments and a 

mechanism for changing its choice parameter.  Yet it seems quite natural that a living 

bird would be less choosy in a transient environment, if only because its knowledge is 

more uncertain:  if the reward distributions are changing, the bird should have less 

certainty in its estimates and be more likely to explore by choosing options with a 

currently smaller estimate.  In transient environments, estimates are less certain, 

exploration is more valuable, and choosiness should decrease.   

The basic DELA framework has no way to represent certainty or confidence in 

the value of the estimators.  Similarly, there is no mechanism for evaluating whether an 

environment is transient or detecting environmental changes and trends.  In the 

conclusion, I will argue that this is a fundamental flaw in the DELA framework, and 

suggest some possible mechanisms for addressing these considerations.
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Conclusion 

 
 This thesis had three main goals.  First, to establish a framework and formalism 

for thinking about learning models that would be useful for organizing the published 

models from psychology and animal behavior.  Second, to establish some formal analytic 

results for DELA models in the context of some simple discrete trials experiments.  

Finally, to use a set of data from actual experiments to evaluate some simple models and 

diagnose model deficiencies. 

 To the first end, DELA models were introduced using the terminology and 

formalism from learning automata.  The utility-estimator-choice structure was then 

presented to help structure the analysis of DELA models and their application to living 

organisms.  This structure proved useful for deriving some analytic results about DELA 

models, and these results can be applied to other learning models that meet the given 

mathematical criteria.  Moreover these results demonstrated that the different model 

elements (utility-estimator-choice) need to be considered together when analyzing model 

dynamics.  The interaction of these elements can lead to some surprising results, such as 

the hot stove effect and the titration bias. 

There were three main mathematical results.  Chapter 3 showed how simple 

DELA models with R-concave choice functions would always produce a titration bias in 

the face of the titration experiment conducted by Bateson and Kacelnik (1995a).  Chapter 

5 proved that the hot stove effect will lead to genuine risk aversion for all DELA models 

with unbiased and commutative averaging functions and R-concave choice functions 

confronted by a BRSE with equiprobable rewards.  Finally, Chapter 6 established some 

results about the Couvillon Bitterman learning model, and presented some mathematical 

techniques for evaluating its behavior. 

 One consequence of the hot stove effect is a relationship between the number of 

consecutive forced trials in an experiment and the magnitude of risk aversion.  Recall, 

from Equation (4.21), that the proportion of choices for the variable option will be 

bounded: 
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 ( )( ) ( )( )( ( )), ( ( )),e c e cE n r H nθΨ ≥ ≥ ΨC A C A r . 

As the number of consecutive choice trials increases, the proportion of choices for the 

variable option will approach the lower bound.  There is a simple experimental test of this 

result: vary the number of choice trials and examine the impact on risk sensitive 

preferences.  If the proportion of choices for the variable option does not decrease as the 

number of consecutive choice trials increases, the decision mechanisms of the 

experimental subjects must be able to avoid the hot stove effect in some way. 

 Comparing model predictions with the results from the large group of Starling 

experiments (Chapter 7) was informative, suggesting a clear model deficiency:  the 

inability to simultaneously fit the results from both the transient T-experiments and 

stationary P experiments with a single set of parameters.  As a quick hack solution, I 

proposed using two different choice function parameters, different levels of choosiness, 

in different types of environments.  While there may be other ways to improve DELA 

model performance on both sets of experiments, such as by introducing different utility or 

averaging functions, introducing different choice parameters was an easy, if unsatisfying, 

solution to the problem.  Moreover, there is some intuitive appeal to the idea that 

organisms would be less choosy, and more explorative, in transient environments. 

 Gallistel (1990) criticized LA-type models because their decision mechanism has 

no place for estimates of certainty.  Not only the value of an estimate matters, the 

certainty, or confidence, of that estimate should also impact the decision making process.  

Many factors can affect the certainty of an estimate for an option’s expected value:  the 

total number of samples taken from the option, the amount of time since the last sample 

was taken, whether the environment has been stable or fluctuating in the past, etc.  

Organisms should incorporate these factors into their decision making process will be 

more efficient. 

 A learning model incorporating uncertainty into the modeling framework might 

be able to resolve the conflict between the T and P experiments and differentiate between 

stationary and transient environments.  If the environment has been transient there is 

more uncertainty in the estimates and choosiness should decrease.  Modifying a DELA 

model in this way might also change the risk sensitive preferences expressed in stationary 
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environments:  estimating environmental transience is complicated by environmental 

stochasticity and runs of bad luck can seem like transitions in the reward distributions.   

 More generally, I would argue that we should think about organisms as 

responding to transient time series and engaging in forecasting.  Based on the sequence of 

samples obtained in the past, the organism needs a forecast about the current rewards 

expected from the environment.  The estimators in a DELA model should perhaps instead 

be thought of as forecasters:  forecasts from the past about the present state of the 

environment are needed.  The averaging functions tested in Chapter 7 make very poor 

forecasters, tending to lag behind the current state of a transient time series.  By 

embellishing the averaging function, for example by introducing separate short term 

(small  and a long term (large  averages and integrating them together into a single 

forecast, better forecasts can be obtained, perhaps increasing the organism’s ability to 

respond to and exploit environmental trends or transitions.   

)m )m

 In an essential way, forecasts about the expected value of engaging in different 

actions are the basis for decision making, but the certainty of these forecasts should also 

play a large role in the decision making process.  Some forecasts deserve more 

confidence than others, as many television meteorologists can attest.  A more complete 

DELA model would generate choices by simultaneously incorporating better forecasting 

methods with estimates of the uncertainty of the forecasts.  As discussed above, this 

could improve the model performance on the body of starling experiments and explain 

the divergence between the two groups of experiments. 

Of course there are many possible ways to integrate forecasting and uncertainty 

into the DELA framework, and many might be equivalent to Ptolemaic epicycles.  My 

hope is that by exploring how simple models fail, new experiments can be motivated that 

will then help direct the embellishment of the simple models.  In the process, formal 

mathematical analysis of model dynamics and detailed numerical comparisons of model 

predictions with experimental data will be essential. 
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Appendix 1- Titration bias proof 

 
Proposition: All strictly R-concave choice functions, , will produce a titration bias, (.)C

0J J Sr rΔ = − >  . 

Proof:  Define  
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i
i

αβ
α

∞

=

=

∑
, (A1.1) 

and note that 0iβ ≥  and 
0

1i
i

β
∞

=

=∑ .  Using Equation (2.42), we can then write the titration 

bias as 
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J S
i

i r iβ
∞
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Δ = −∑ . (A1.2) 

Rearranging this equation gives 
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J r i r i S i
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i i rβ β
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+ −
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Δ = − + −∑ ∑ β . (A1.3) 

Since the second summation in this equation is clearly greater than or equal to zero, the 

proof is complete if we can show that the first summation is also greater than or equal to 

zero.  Thus if we can show that 0
S Sr i r iβ β+ −− ≥  for 1,... Si r= , we are done. 

The proof will proceed by induction.  First, note from Equation (2.44) that  
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and similarly  
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Subtracting these, we obtain 
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By condition C.2, we know that ( , ) 1 ( , ) 1
S Sr S S s Sr r r rφ φ= = − = −C C , so (A1.6) simplifies 

to 
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Since the choice function is assumed to be strictly R-concave, we know from Equation 

(2.50) that 

 11 ( , 1) ( 1, )
Sr S S S Sr r r rφ φ− +− = − > + =C C  (A1.8) 

and thus that 1 1 0
S Sr rβ β+ −− > . 

To complete the proof, note that 
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Assume that 0
S Sr i r iβ β+ −− > ; then Equation (A1.9) can be rewritten as 
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As above, however, it follows directly from the assumed R-concavity that  
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Thus by induction  

 0
S Sr i r iβ β+ −− >  (A1.12) 

for all . 1,... Si r=

 

Proposition: It is more difficult for an R-affine choice function, to produce a titration 

bias. 
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Proof:   Note that, for an R-affine function, 1
Sr i r iS

φ φ+ −− = , and thus, by an argument 

similar to the one presented above, 0
S Sr i r iβ β+ −− =  for all 1,... Si r= .  So the first 

summation in Equation (A1.3) is equal to zero, and any titration bias will only be a result 

of the second summation. 
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Appendix 2- Hot stove effect proof 

 

Proposition:  An agent using a DELA model with an R-concave choice function and an 

unbiased and commutative averaging function will always display risk averse behavior 

on the BRSE when 1
2p p+ −= = . 

Proof:  We need to show that, for the assumed decision model,  

 1
2θ < . (A2.1) 

From Equation (4.10), this is equivalent to showing that 
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Since the rewards are assumed to be equiprobable, 1
2

e
i Wπ = , and the left side of Equation 

(A2.2) becomes  
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We have assumed that the averaging function is commutative, so we can rewrite this sum 

as 
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Since the choice function is R-concave, we know that  

 ( (1 ), ) 1 ( (1 ), )v i v v ir K r r K rv+ ≤ − −C C  (A2.5) 

and substituting into Equation (A2.4) we obtain 
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Simple arithmetic then gives  
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Let ( (1 ), )i v ir K r= −�C C v  and substitute into (A2.7) to obtain 
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Since  is a probability, (0,1)i ∈�C ( ) 1
41i i− ≤� �C C  with equality only when 1

21i i= − =� �
� �C C .  

Thus 
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If there is at least one memory state for which 1i ≠ −�
�C �C  then the inequality is strict, 

 1 2
θ
> , (A2.10) 

and the agent will be risk averse.  
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Appendix 3- Asymptotic characteristics of the CB model 

 
Let ( )x t be a variable that is defined on [0, )∞  and evolves in discrete time steps.  

The evolution of ( )x t is given by probabilistically applying one of contractive linear 

transformations to x at each time step. That is  

N
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 (A3.1) 

where ip  is the probability of applying transformation (.)if , and the (.)if are affine 

functions given by: 

 ( )i i if x b m x= +  (A3.2) 

where , , and both are constant across time.  We want to compute the 

asymptotic expected value of 

(0, )ib ∈ ∞ (0,1)im ∈

( )x t : 

 lim ( ( ))
t

x E x t
→∞

=� . (A3.3) 

For any given initial value 0(0)x x= , only certain values for ( )x t  are possible.  

Denote by the set of points, , that can be reached from tX t
js 0x  at time t. For example: 
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. (A3.4) 

Associated with each point , is a probability, t
js t

jμ , which denotes the probability that 

( )x t will have the value  at time t given an initial value of t
js 0x .  Let  represent the set 

of probabilities associated with .  Then: 

tP

tX
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M . (A3.5) 
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The expected value of ( )x t  at time t, tx� ,  is then given by: 
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So then 
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and lim t

t
x x

→∞
=� � . 

 Using Equation (A3.2), we can rewrite Equation (A3.7) as  
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Note that  and thus  Pr( ( ) ) 0tx t X∉ =

 1
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s X

μ
∈

=∑ . (A3.9) 

So Equation (A3.8) reduces to 
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By definition (Equation (A3.6)), 1

t t
j

t t
j j

s X

x sμ− − −

∈

= ∑� , and Equation (A3.10) becomes 
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Assuming that x� exists, then in the limit as t →∞ 1t tx x x −= =� � �  and thus from Equation 

(A3.11), 
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Rewriting Equation (A3.12) gives 
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For the CB model on the BRSE, we have the special case where , 2N =

 1( ) (1 )f x m r m x− − −= − + , (A3.14) 

 2 ( ) (1 )f x m r m x+ + += − + , (A3.15) 

1p p−= , and 2p p+= .  In this case Equation (A3.13) can be rewritten as 
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1p p− ++ = , this simplifies to  Making use of the fact that 

( ) ( )1 1
(1 ) (1 ) (1 ) (1 )

p m p m
x r r

p m p m p m p m
+ + − −

+ −
+ + − − + + −

− −
= +

− + − − + −
� . (A3.17)  

−

)

Define  

(
( )

1
1

1
1

M
p m
p m
− −

+ +

=
−

+
−

 . (A3.18) 

Then Equation (A3.17) can be rewritten as: 

 (1 )x r M r M+ −= + −� . (A3.19) 

 

 Higher order moments can also be computed in this way.  For example, the 

variance of the asymptotic distribution can be shown to be 
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